Cálculo Exemplos

Avalie o Limite limite à medida que x aproxima pi/4 de (tan(x)-1)/(4x-pi)
Etapa 1
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Toque para ver mais passagens...
Etapa 1.1.2.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.2
Mova o limite dentro da função trigonométrica, pois a tangente é contínua.
Etapa 1.1.2.1.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.2
Avalie o limite de substituindo por .
Etapa 1.1.2.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.1.2.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.2.3.1.1
O valor exato de é .
Etapa 1.1.2.3.1.2
Multiplique por .
Etapa 1.1.2.3.2
Subtraia de .
Etapa 1.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.3.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.3.1.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.2
Avalie o limite de substituindo por .
Etapa 1.1.3.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.1.3.3.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.3.3.1.1
Cancele o fator comum.
Etapa 1.1.3.3.1.2
Reescreva a expressão.
Etapa 1.1.3.3.2
Subtraia de .
Etapa 1.1.3.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
A derivada de em relação a é .
Etapa 1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.5
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.5.1
Some e .
Etapa 1.3.5.2
Reescreva em termos de senos e cossenos.
Etapa 1.3.5.3
Aplique a regra do produto a .
Etapa 1.3.5.4
Um elevado a qualquer potência é um.
Etapa 1.3.6
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.7
Avalie .
Toque para ver mais passagens...
Etapa 1.3.7.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.7.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.7.3
Multiplique por .
Etapa 1.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.9
Some e .
Etapa 1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 1.5
Multiplique por .
Etapa 2
Avalie o limite.
Toque para ver mais passagens...
Etapa 2.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.2
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 2.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.4
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.5
Mova o limite dentro da função trigonométrica, pois o cosseno é contínuo.
Etapa 3
Avalie o limite de substituindo por .
Etapa 4
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 4.1
Combine.
Etapa 4.2
Multiplique por .
Etapa 4.3
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 4.3.1
O valor exato de é .
Etapa 4.3.2
Aplique a regra do produto a .
Etapa 4.3.3
Reescreva como .
Toque para ver mais passagens...
Etapa 4.3.3.1
Use para reescrever como .
Etapa 4.3.3.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.3.3.3
Combine e .
Etapa 4.3.3.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.3.3.4.1
Cancele o fator comum.
Etapa 4.3.3.4.2
Reescreva a expressão.
Etapa 4.3.3.5
Avalie o expoente.
Etapa 4.3.4
Eleve à potência de .
Etapa 4.3.5
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 4.3.5.1
Fatore de .
Etapa 4.3.5.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 4.3.5.2.1
Fatore de .
Etapa 4.3.5.2.2
Cancele o fator comum.
Etapa 4.3.5.2.3
Reescreva a expressão.
Etapa 4.4
Combine e .
Etapa 4.5
Divida por .
Etapa 5
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: