Cálculo Exemplos

Encontre o Máximo e Mínimo Local f(x)=1/x+ logaritmo natural de x
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Reescreva como .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3
A derivada de em relação a é .
Etapa 1.4
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.4.2
Reordene os termos.
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Reescreva como .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.3.2
Reescreva como .
Etapa 2.3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3.3
Substitua todas as ocorrências de por .
Etapa 2.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.6
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.3.6.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.6.2
Multiplique por .
Etapa 2.3.7
Multiplique por .
Etapa 2.3.8
Eleve à potência de .
Etapa 2.3.9
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.3.10
Subtraia de .
Etapa 2.3.11
Multiplique por .
Etapa 2.3.12
Multiplique por .
Etapa 2.3.13
Some e .
Etapa 2.4
Reescreva a expressão usando a regra do expoente negativo .
Etapa 2.5
Reescreva a expressão usando a regra do expoente negativo .
Etapa 2.6
Combine e .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.2
Avalie .
Toque para ver mais passagens...
Etapa 4.1.2.1
Reescreva como .
Etapa 4.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.3
A derivada de em relação a é .
Etapa 4.1.4
Simplifique.
Toque para ver mais passagens...
Etapa 4.1.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 4.1.4.2
Reordene os termos.
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 5.2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 5.2.2
Como contém números e variáveis, há duas etapas para encontrar o MMC. Encontre o MMC da parte numérica 1) e, depois, o da parte variável .
Etapa 5.2.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 5.2.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 5.2.5
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 5.2.6
O fator de é o próprio .
ocorre vez.
Etapa 5.2.7
Os fatores para são , que é multiplicado um pelo outro vezes.
ocorre vezes.
Etapa 5.2.8
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 5.2.9
Multiplique por .
Etapa 5.3
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 5.3.1
Multiplique cada termo em por .
Etapa 5.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.3.2.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.3.2.1.1.1
Fatore de .
Etapa 5.3.2.1.1.2
Cancele o fator comum.
Etapa 5.3.2.1.1.3
Reescreva a expressão.
Etapa 5.3.2.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.3.2.1.2.1
Mova o negativo de maior ordem em para o numerador.
Etapa 5.3.2.1.2.2
Cancele o fator comum.
Etapa 5.3.2.1.2.3
Reescreva a expressão.
Etapa 5.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.3.3.1
Multiplique por .
Etapa 5.4
Some aos dois lados da equação.
Etapa 6
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 6.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 6.2
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 6.3
Resolva .
Toque para ver mais passagens...
Etapa 6.3.1
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 6.3.2
Simplifique .
Toque para ver mais passagens...
Etapa 6.3.2.1
Reescreva como .
Etapa 6.3.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 6.3.2.3
Mais ou menos é .
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 9.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 9.1.1
Um elevado a qualquer potência é um.
Etapa 9.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 9.1.2.1
Cancele o fator comum.
Etapa 9.1.2.2
Reescreva a expressão.
Etapa 9.1.3
Multiplique por .
Etapa 9.1.4
Um elevado a qualquer potência é um.
Etapa 9.1.5
Divida por .
Etapa 9.2
Some e .
Etapa 10
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 11
Encontre o valor y quando .
Toque para ver mais passagens...
Etapa 11.1
Substitua a variável por na expressão.
Etapa 11.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 11.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 11.2.1.1
Divida por .
Etapa 11.2.1.2
O logaritmo natural de é .
Etapa 11.2.2
Some e .
Etapa 11.2.3
A resposta final é .
Etapa 12
Esses são os extremos locais para .
é um mínimo local
Etapa 13