Cálculo Exemplos

Encontre o Máximo e Mínimo Local y=2x^3-24x-9
Etapa 1
Escreva como uma função.
Etapa 2
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Some e .
Etapa 3
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2
Avalie .
Toque para ver mais passagens...
Etapa 3.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.3
Multiplique por .
Etapa 3.3
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Some e .
Etapa 4
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 5
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 5.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 5.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 5.1.2
Avalie .
Toque para ver mais passagens...
Etapa 5.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.2.3
Multiplique por .
Etapa 5.1.3
Avalie .
Toque para ver mais passagens...
Etapa 5.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.3.3
Multiplique por .
Etapa 5.1.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 5.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.4.2
Some e .
Etapa 5.2
A primeira derivada de com relação a é .
Etapa 6
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 6.1
Defina a primeira derivada como igual a .
Etapa 6.2
Some aos dois lados da equação.
Etapa 6.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 6.3.1
Divida cada termo em por .
Etapa 6.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.3.2.1.1
Cancele o fator comum.
Etapa 6.3.2.1.2
Divida por .
Etapa 6.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.3.3.1
Divida por .
Etapa 6.4
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 6.5
Simplifique .
Toque para ver mais passagens...
Etapa 6.5.1
Reescreva como .
Etapa 6.5.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 6.6
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 6.6.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 6.6.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 6.6.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 7
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 7.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 8
Pontos críticos para avaliar.
Etapa 9
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 10
Multiplique por .
Etapa 11
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 12
Encontre o valor y quando .
Toque para ver mais passagens...
Etapa 12.1
Substitua a variável por na expressão.
Etapa 12.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 12.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 12.2.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 12.2.1.1.1
Multiplique por .
Toque para ver mais passagens...
Etapa 12.2.1.1.1.1
Eleve à potência de .
Etapa 12.2.1.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 12.2.1.1.2
Some e .
Etapa 12.2.1.2
Eleve à potência de .
Etapa 12.2.1.3
Multiplique por .
Etapa 12.2.2
Simplifique subtraindo os números.
Toque para ver mais passagens...
Etapa 12.2.2.1
Subtraia de .
Etapa 12.2.2.2
Subtraia de .
Etapa 12.2.3
A resposta final é .
Etapa 13
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 14
Multiplique por .
Etapa 15
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 16
Encontre o valor y quando .
Toque para ver mais passagens...
Etapa 16.1
Substitua a variável por na expressão.
Etapa 16.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 16.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 16.2.1.1
Eleve à potência de .
Etapa 16.2.1.2
Multiplique por .
Etapa 16.2.1.3
Multiplique por .
Etapa 16.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 16.2.2.1
Some e .
Etapa 16.2.2.2
Subtraia de .
Etapa 16.2.3
A resposta final é .
Etapa 17
Esses são os extremos locais para .
é um mínimo local
é um máximo local
Etapa 18