Cálculo Exemplos

Avalie a Integral integral de 1/(x-x^2) com relação a x
Etapa 1
Escreva a fração usando a decomposição da fração parcial.
Toque para ver mais passagens...
Etapa 1.1
Decomponha a fração e multiplique pelo denominador comum.
Toque para ver mais passagens...
Etapa 1.1.1
Fatore de .
Toque para ver mais passagens...
Etapa 1.1.1.1
Eleve à potência de .
Etapa 1.1.1.2
Fatore de .
Etapa 1.1.1.3
Fatore de .
Etapa 1.1.1.4
Fatore de .
Etapa 1.1.1.5
Multiplique por .
Etapa 1.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.3
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 1.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.4.1
Cancele o fator comum.
Etapa 1.1.4.2
Reescreva a expressão.
Etapa 1.1.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.5.1
Cancele o fator comum.
Etapa 1.1.5.2
Reescreva a expressão.
Etapa 1.1.6
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.6.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.6.1.1
Cancele o fator comum.
Etapa 1.1.6.1.2
Divida por .
Etapa 1.1.6.2
Aplique a propriedade distributiva.
Etapa 1.1.6.3
Multiplique por .
Etapa 1.1.6.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.6.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.6.5.1
Cancele o fator comum.
Etapa 1.1.6.5.2
Divida por .
Etapa 1.1.7
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.7.1
Mova .
Etapa 1.1.7.2
Reordene e .
Etapa 1.1.7.3
Mova .
Etapa 1.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Toque para ver mais passagens...
Etapa 1.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.3
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 1.3
Resolva o sistema de equações.
Toque para ver mais passagens...
Etapa 1.3.1
Reescreva a equação como .
Etapa 1.3.2
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.2.1
Substitua todas as ocorrências de em por .
Etapa 1.3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.2.2.1
Multiplique por .
Etapa 1.3.3
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.3.1
Reescreva a equação como .
Etapa 1.3.3.2
Some aos dois lados da equação.
Etapa 1.3.4
Resolva o sistema de equações.
Etapa 1.3.5
Liste todas as soluções.
Etapa 1.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para e .
Etapa 1.5
Remova o zero da expressão.
Etapa 2
Divida a integral única em várias integrais.
Etapa 3
A integral de com relação a é .
Etapa 4
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 4.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 4.1.1
Reescreva.
Etapa 4.1.2
Divida por .
Etapa 4.2
Reescreva o problema usando e .
Etapa 5
Mova o número negativo para a frente da fração.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
A integral de com relação a é .
Etapa 8
Simplifique.
Etapa 9
Use a propriedade dos logaritmos do quociente, .
Etapa 10
Substitua todas as ocorrências de por .