Cálculo Exemplos

Avalie a Integral integral de (x+1)/((x^2+2x-3)^2) com relação a x
Etapa 1
Escreva a fração usando a decomposição da fração parcial.
Toque para ver mais passagens...
Etapa 1.1
Decomponha a fração e multiplique pelo denominador comum.
Toque para ver mais passagens...
Etapa 1.1.1
Fatore a fração.
Toque para ver mais passagens...
Etapa 1.1.1.1
Fatore usando o método AC.
Toque para ver mais passagens...
Etapa 1.1.1.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 1.1.1.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 1.1.1.2
Aplique a regra do produto a .
Etapa 1.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.3
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.4
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.5
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.6
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 1.1.7
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.7.1
Cancele o fator comum.
Etapa 1.1.7.2
Reescreva a expressão.
Etapa 1.1.8
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.8.1
Cancele o fator comum.
Etapa 1.1.8.2
Divida por .
Etapa 1.1.9
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.9.1.1
Cancele o fator comum.
Etapa 1.1.9.1.2
Divida por .
Etapa 1.1.9.2
Reescreva como .
Etapa 1.1.9.3
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.9.3.1
Aplique a propriedade distributiva.
Etapa 1.1.9.3.2
Aplique a propriedade distributiva.
Etapa 1.1.9.3.3
Aplique a propriedade distributiva.
Etapa 1.1.9.4
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.9.4.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.4.1.1
Multiplique por .
Etapa 1.1.9.4.1.2
Mova para a esquerda de .
Etapa 1.1.9.4.1.3
Multiplique por .
Etapa 1.1.9.4.2
Some e .
Etapa 1.1.9.5
Aplique a propriedade distributiva.
Etapa 1.1.9.6
Simplifique.
Toque para ver mais passagens...
Etapa 1.1.9.6.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.9.6.2
Mova para a esquerda de .
Etapa 1.1.9.7
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.1.9.7.1
Fatore de .
Etapa 1.1.9.7.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.1.9.7.2.1
Multiplique por .
Etapa 1.1.9.7.2.2
Cancele o fator comum.
Etapa 1.1.9.7.2.3
Reescreva a expressão.
Etapa 1.1.9.7.2.4
Divida por .
Etapa 1.1.9.8
Aplique a propriedade distributiva.
Etapa 1.1.9.9
Mova para a esquerda de .
Etapa 1.1.9.10
Reescreva como .
Etapa 1.1.9.11
Reescreva como .
Etapa 1.1.9.12
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.9.12.1
Aplique a propriedade distributiva.
Etapa 1.1.9.12.2
Aplique a propriedade distributiva.
Etapa 1.1.9.12.3
Aplique a propriedade distributiva.
Etapa 1.1.9.13
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.9.13.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.13.1.1
Multiplique por .
Etapa 1.1.9.13.1.2
Mova para a esquerda de .
Etapa 1.1.9.13.1.3
Multiplique por .
Etapa 1.1.9.13.2
Some e .
Etapa 1.1.9.14
Expanda multiplicando cada termo na primeira expressão por cada um dos termos na segunda expressão.
Etapa 1.1.9.15
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.15.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.1.9.15.1.1
Mova .
Etapa 1.1.9.15.1.2
Multiplique por .
Toque para ver mais passagens...
Etapa 1.1.9.15.1.2.1
Eleve à potência de .
Etapa 1.1.9.15.1.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.1.9.15.1.3
Some e .
Etapa 1.1.9.15.2
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.9.15.3
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.1.9.15.3.1
Mova .
Etapa 1.1.9.15.3.2
Multiplique por .
Etapa 1.1.9.15.4
Mova para a esquerda de .
Etapa 1.1.9.15.5
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.9.15.6
Multiplique por .
Etapa 1.1.9.15.7
Multiplique por .
Etapa 1.1.9.16
Subtraia de .
Etapa 1.1.9.17
Subtraia de .
Etapa 1.1.9.18
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.9.18.1
Cancele o fator comum.
Etapa 1.1.9.18.2
Divida por .
Etapa 1.1.9.19
Reescreva como .
Etapa 1.1.9.20
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.9.20.1
Aplique a propriedade distributiva.
Etapa 1.1.9.20.2
Aplique a propriedade distributiva.
Etapa 1.1.9.20.3
Aplique a propriedade distributiva.
Etapa 1.1.9.21
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.9.21.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.21.1.1
Multiplique por .
Etapa 1.1.9.21.1.2
Mova para a esquerda de .
Etapa 1.1.9.21.1.3
Reescreva como .
Etapa 1.1.9.21.1.4
Reescreva como .
Etapa 1.1.9.21.1.5
Multiplique por .
Etapa 1.1.9.21.2
Subtraia de .
Etapa 1.1.9.22
Aplique a propriedade distributiva.
Etapa 1.1.9.23
Simplifique.
Toque para ver mais passagens...
Etapa 1.1.9.23.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.9.23.2
Multiplique por .
Etapa 1.1.9.24
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.1.9.24.1
Fatore de .
Etapa 1.1.9.24.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.1.9.24.2.1
Multiplique por .
Etapa 1.1.9.24.2.2
Cancele o fator comum.
Etapa 1.1.9.24.2.3
Reescreva a expressão.
Etapa 1.1.9.24.2.4
Divida por .
Etapa 1.1.9.25
Reescreva como .
Etapa 1.1.9.26
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.9.26.1
Aplique a propriedade distributiva.
Etapa 1.1.9.26.2
Aplique a propriedade distributiva.
Etapa 1.1.9.26.3
Aplique a propriedade distributiva.
Etapa 1.1.9.27
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.9.27.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.27.1.1
Multiplique por .
Etapa 1.1.9.27.1.2
Mova para a esquerda de .
Etapa 1.1.9.27.1.3
Reescreva como .
Etapa 1.1.9.27.1.4
Reescreva como .
Etapa 1.1.9.27.1.5
Multiplique por .
Etapa 1.1.9.27.2
Subtraia de .
Etapa 1.1.9.28
Aplique a propriedade distributiva.
Etapa 1.1.9.29
Simplifique.
Toque para ver mais passagens...
Etapa 1.1.9.29.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.9.29.2
Multiplique por .
Etapa 1.1.9.30
Expanda multiplicando cada termo na primeira expressão por cada um dos termos na segunda expressão.
Etapa 1.1.9.31
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.31.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.1.9.31.1.1
Mova .
Etapa 1.1.9.31.1.2
Multiplique por .
Toque para ver mais passagens...
Etapa 1.1.9.31.1.2.1
Eleve à potência de .
Etapa 1.1.9.31.1.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.1.9.31.1.3
Some e .
Etapa 1.1.9.31.2
Mova para a esquerda de .
Etapa 1.1.9.31.3
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.1.9.31.3.1
Mova .
Etapa 1.1.9.31.3.2
Multiplique por .
Etapa 1.1.9.31.4
Multiplique por .
Etapa 1.1.9.31.5
Mova para a esquerda de .
Etapa 1.1.9.32
Subtraia de .
Etapa 1.1.9.33
Multiplique por .
Etapa 1.1.9.34
Some e .
Etapa 1.1.10
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.10.1
Mova .
Etapa 1.1.10.2
Reordene e .
Etapa 1.1.10.3
Mova .
Etapa 1.1.10.4
Mova .
Etapa 1.1.10.5
Mova .
Etapa 1.1.10.6
Mova .
Etapa 1.1.10.7
Mova .
Etapa 1.1.10.8
Mova .
Etapa 1.1.10.9
Mova .
Etapa 1.1.10.10
Mova .
Etapa 1.1.10.11
Mova .
Etapa 1.1.10.12
Mova .
Etapa 1.1.10.13
Mova .
Etapa 1.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Toque para ver mais passagens...
Etapa 1.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.3
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.4
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.5
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 1.3
Resolva o sistema de equações.
Toque para ver mais passagens...
Etapa 1.3.1
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.1.1
Reescreva a equação como .
Etapa 1.3.1.2
Subtraia dos dois lados da equação.
Etapa 1.3.2
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.2.1
Substitua todas as ocorrências de em por .
Etapa 1.3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.2.2.1.1
Multiplique por .
Etapa 1.3.2.2.1.2
Some e .
Etapa 1.3.2.3
Substitua todas as ocorrências de em por .
Etapa 1.3.2.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.2.4.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.2.4.1.1
Multiplique por .
Etapa 1.3.2.4.1.2
Subtraia de .
Etapa 1.3.2.5
Substitua todas as ocorrências de em por .
Etapa 1.3.2.6
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.2.6.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.2.6.1.1
Multiplique por .
Etapa 1.3.2.6.1.2
Some e .
Etapa 1.3.3
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.3.1
Reescreva a equação como .
Etapa 1.3.3.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.3.3.2.1
Subtraia dos dois lados da equação.
Etapa 1.3.3.2.2
Subtraia dos dois lados da equação.
Etapa 1.3.4
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.4.1
Substitua todas as ocorrências de em por .
Etapa 1.3.4.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.4.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.4.2.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.4.2.1.1.1
Aplique a propriedade distributiva.
Etapa 1.3.4.2.1.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.4.2.1.1.2.1
Multiplique por .
Etapa 1.3.4.2.1.1.2.2
Multiplique por .
Etapa 1.3.4.2.1.1.2.3
Multiplique por .
Etapa 1.3.4.2.1.2
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 1.3.4.2.1.2.1
Some e .
Etapa 1.3.4.2.1.2.2
Subtraia de .
Etapa 1.3.4.3
Substitua todas as ocorrências de em por .
Etapa 1.3.4.4
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.4.4.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.4.4.1.1
Remova os parênteses.
Etapa 1.3.4.4.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.4.4.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.4.4.2.1.1
Subtraia de .
Etapa 1.3.4.4.2.1.2
Subtraia de .
Etapa 1.3.5
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.5.1
Reescreva a equação como .
Etapa 1.3.5.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.3.5.2.1
Subtraia dos dois lados da equação.
Etapa 1.3.5.2.2
Some aos dois lados da equação.
Etapa 1.3.5.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.3.5.3.1
Divida cada termo em por .
Etapa 1.3.5.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.5.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.5.3.2.1.1
Cancele o fator comum.
Etapa 1.3.5.3.2.1.2
Divida por .
Etapa 1.3.5.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.5.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.5.3.3.1.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 1.3.5.3.3.1.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.3.5.3.3.1.2.1
Fatore de .
Etapa 1.3.5.3.3.1.2.2
Mova o número negativo do denominador de .
Etapa 1.3.5.3.3.1.3
Reescreva como .
Etapa 1.3.5.3.3.1.4
Multiplique por .
Etapa 1.3.6
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.6.1
Substitua todas as ocorrências de em por .
Etapa 1.3.6.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.6.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.6.2.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.6.2.1.1.1
Aplique a propriedade distributiva.
Etapa 1.3.6.2.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.6.2.1.1.2.1
Fatore de .
Etapa 1.3.6.2.1.1.2.2
Cancele o fator comum.
Etapa 1.3.6.2.1.1.2.3
Reescreva a expressão.
Etapa 1.3.6.2.1.1.3
Multiplique por .
Etapa 1.3.6.2.1.2
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 1.3.6.2.1.2.1
Subtraia de .
Etapa 1.3.6.2.1.2.2
Some e .
Etapa 1.3.6.3
Substitua todas as ocorrências de em por .
Etapa 1.3.6.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.6.4.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.6.4.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.6.4.1.1.1
Aplique a propriedade distributiva.
Etapa 1.3.6.4.1.1.2
Combine e .
Etapa 1.3.6.4.1.1.3
Multiplique por .
Etapa 1.3.6.4.1.1.4
Mova o número negativo para a frente da fração.
Etapa 1.3.6.4.1.2
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 1.3.6.4.1.2.1
Escreva como uma fração com um denominador comum.
Etapa 1.3.6.4.1.2.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.3.6.4.1.2.2.1
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.6.4.1.2.2.2
Subtraia de .
Etapa 1.3.6.4.1.2.2.3
Mova o número negativo para a frente da fração.
Etapa 1.3.6.4.1.2.3
Subtraia de .
Etapa 1.3.7
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.7.1
Reescreva a equação como .
Etapa 1.3.7.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.3.7.2.1
Subtraia dos dois lados da equação.
Etapa 1.3.7.2.2
Subtraia de .
Etapa 1.3.7.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.3.7.3.1
Divida cada termo em por .
Etapa 1.3.7.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.7.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.7.3.2.1.1
Cancele o fator comum.
Etapa 1.3.7.3.2.1.2
Divida por .
Etapa 1.3.7.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.7.3.3.1
Divida por .
Etapa 1.3.8
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.8.1
Substitua todas as ocorrências de em por .
Etapa 1.3.8.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.8.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.8.2.1.1
Multiplique por .
Etapa 1.3.8.2.1.2
Some e .
Etapa 1.3.8.3
Substitua todas as ocorrências de em por .
Etapa 1.3.8.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.8.4.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.8.4.1.1
Multiplique por .
Etapa 1.3.8.4.1.2
Some e .
Etapa 1.3.8.5
Substitua todas as ocorrências de em por .
Etapa 1.3.8.6
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.8.6.1
Multiplique por .
Etapa 1.3.9
Liste todas as soluções.
Etapa 1.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para , , e .
Etapa 1.5
Simplifique.
Toque para ver mais passagens...
Etapa 1.5.1
Multiplique o numerador pelo inverso do denominador.
Etapa 1.5.2
Combine.
Etapa 1.5.3
Multiplique por .
Etapa 1.5.4
Divida por .
Etapa 1.5.5
Multiplique o numerador pelo inverso do denominador.
Etapa 1.5.6
Multiplique por .
Etapa 1.5.7
Mova para a esquerda de .
Etapa 1.5.8
Divida por .
Etapa 1.5.9
Remova o zero da expressão.
Etapa 2
Divida a integral única em várias integrais.
Etapa 3
Como é constante com relação a , mova para fora da integral.
Etapa 4
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 4.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 4.1.1
Diferencie .
Etapa 4.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.5
Some e .
Etapa 4.2
Reescreva o problema usando e .
Etapa 5
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 5.1
Mova para fora do denominador, elevando-o à potência.
Etapa 5.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 5.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 5.2.2
Multiplique por .
Etapa 6
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 7
Como é constante com relação a , mova para fora da integral.
Etapa 8
Como é constante com relação a , mova para fora da integral.
Etapa 9
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 9.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 9.1.1
Diferencie .
Etapa 9.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 9.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 9.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 9.1.5
Some e .
Etapa 9.2
Reescreva o problema usando e .
Etapa 10
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 10.1
Mova para fora do denominador, elevando-o à potência.
Etapa 10.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 10.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 10.2.2
Multiplique por .
Etapa 11
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 12
Simplifique.
Toque para ver mais passagens...
Etapa 12.1
Simplifique.
Etapa 12.2
Simplifique.
Toque para ver mais passagens...
Etapa 12.2.1
Multiplique por .
Etapa 12.2.2
Multiplique por .
Etapa 12.2.3
Multiplique por .
Etapa 12.2.4
Combine e .
Etapa 12.2.5
Mova para o denominador usando a regra do expoente negativo .
Etapa 13
Substitua novamente para cada variável de substituição de integração.
Toque para ver mais passagens...
Etapa 13.1
Substitua todas as ocorrências de por .
Etapa 13.2
Substitua todas as ocorrências de por .