Cálculo Exemplos

Encontre a Reta Tangente Horizontal 2(x^2+y^2)^2=25(x^2-y^2)
Etapa 1
Set each solution of as a function of .
Etapa 2
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
Toque para ver mais passagens...
Etapa 2.1
Diferencie os dois lados da equação.
Etapa 2.2
Diferencie o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.2.3
Substitua todas as ocorrências de por .
Etapa 2.2.3
Diferencie.
Toque para ver mais passagens...
Etapa 2.2.3.1
Multiplique por .
Etapa 2.2.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.4
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.2.4.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.4.3
Substitua todas as ocorrências de por .
Etapa 2.2.5
Reescreva como .
Etapa 2.2.6
Simplifique.
Toque para ver mais passagens...
Etapa 2.2.6.1
Aplique a propriedade distributiva.
Etapa 2.2.6.2
Reordene os fatores de .
Etapa 2.3
Diferencie o lado direito da equação.
Toque para ver mais passagens...
Etapa 2.3.1
Diferencie.
Toque para ver mais passagens...
Etapa 2.3.1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.2.3
Substitua todas as ocorrências de por .
Etapa 2.3.3
Multiplique por .
Etapa 2.3.4
Reescreva como .
Etapa 2.3.5
Simplifique.
Toque para ver mais passagens...
Etapa 2.3.5.1
Aplique a propriedade distributiva.
Etapa 2.3.5.2
Combine os termos.
Toque para ver mais passagens...
Etapa 2.3.5.2.1
Multiplique por .
Etapa 2.3.5.2.2
Multiplique por .
Etapa 2.3.5.3
Reordene os termos.
Etapa 2.4
Reformule a equação definindo o lado esquerdo igual ao lado direito.
Etapa 2.5
Resolva .
Toque para ver mais passagens...
Etapa 2.5.1
Simplifique .
Toque para ver mais passagens...
Etapa 2.5.1.1
Reescreva.
Etapa 2.5.1.2
Simplifique somando os zeros.
Etapa 2.5.1.3
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 2.5.1.3.1
Aplique a propriedade distributiva.
Etapa 2.5.1.3.2
Aplique a propriedade distributiva.
Etapa 2.5.1.3.3
Aplique a propriedade distributiva.
Etapa 2.5.1.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.5.1.4.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.5.1.4.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.5.1.4.2.1
Mova .
Etapa 2.5.1.4.2.2
Multiplique por .
Toque para ver mais passagens...
Etapa 2.5.1.4.2.2.1
Eleve à potência de .
Etapa 2.5.1.4.2.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.5.1.4.2.3
Some e .
Etapa 2.5.1.4.3
Multiplique por .
Etapa 2.5.1.4.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.5.1.4.5
Multiplique por .
Etapa 2.5.1.4.6
Multiplique por .
Etapa 2.5.1.4.7
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.5.1.4.7.1
Mova .
Etapa 2.5.1.4.7.2
Multiplique por .
Toque para ver mais passagens...
Etapa 2.5.1.4.7.2.1
Eleve à potência de .
Etapa 2.5.1.4.7.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.5.1.4.7.3
Some e .
Etapa 2.5.1.4.8
Multiplique por .
Etapa 2.5.2
Some aos dois lados da equação.
Etapa 2.5.3
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 2.5.3.1
Subtraia dos dois lados da equação.
Etapa 2.5.3.2
Subtraia dos dois lados da equação.
Etapa 2.5.4
Fatore de .
Toque para ver mais passagens...
Etapa 2.5.4.1
Fatore de .
Etapa 2.5.4.2
Fatore de .
Etapa 2.5.4.3
Fatore de .
Etapa 2.5.4.4
Fatore de .
Etapa 2.5.4.5
Fatore de .
Etapa 2.5.5
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.5.5.1
Divida cada termo em por .
Etapa 2.5.5.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.5.5.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.5.2.1.1
Cancele o fator comum.
Etapa 2.5.5.2.1.2
Reescreva a expressão.
Etapa 2.5.5.2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.5.2.2.1
Cancele o fator comum.
Etapa 2.5.5.2.2.2
Reescreva a expressão.
Etapa 2.5.5.2.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.5.2.3.1
Cancele o fator comum.
Etapa 2.5.5.2.3.2
Divida por .
Etapa 2.5.5.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.5.5.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.5.5.3.1.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.5.5.3.1.1.1
Fatore de .
Etapa 2.5.5.3.1.1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.5.5.3.1.1.2.1
Fatore de .
Etapa 2.5.5.3.1.1.2.2
Cancele o fator comum.
Etapa 2.5.5.3.1.1.2.3
Reescreva a expressão.
Etapa 2.5.5.3.1.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.5.5.3.1.2.1
Fatore de .
Etapa 2.5.5.3.1.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.5.5.3.1.2.2.1
Fatore de .
Etapa 2.5.5.3.1.2.2.2
Cancele o fator comum.
Etapa 2.5.5.3.1.2.2.3
Reescreva a expressão.
Etapa 2.5.5.3.1.3
Mova o número negativo para a frente da fração.
Etapa 2.5.5.3.1.4
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.5.5.3.1.4.1
Fatore de .
Etapa 2.5.5.3.1.4.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.5.5.3.1.4.2.1
Fatore de .
Etapa 2.5.5.3.1.4.2.2
Cancele o fator comum.
Etapa 2.5.5.3.1.4.2.3
Reescreva a expressão.
Etapa 2.5.5.3.1.5
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.5.5.3.1.5.1
Fatore de .
Etapa 2.5.5.3.1.5.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.5.5.3.1.5.2.1
Cancele o fator comum.
Etapa 2.5.5.3.1.5.2.2
Reescreva a expressão.
Etapa 2.5.5.3.1.6
Mova o número negativo para a frente da fração.
Etapa 2.5.5.3.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.5.5.3.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 2.5.5.3.3.1
Multiplique por .
Etapa 2.5.5.3.3.2
Reordene os fatores de .
Etapa 2.5.5.3.4
Combine os numeradores em relação ao denominador comum.
Etapa 2.5.5.3.5
Combine os numeradores em relação ao denominador comum.
Etapa 2.5.5.3.6
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.5.5.3.6.1
Mova .
Etapa 2.5.5.3.6.2
Multiplique por .
Etapa 2.5.5.3.7
Fatore de .
Toque para ver mais passagens...
Etapa 2.5.5.3.7.1
Fatore de .
Etapa 2.5.5.3.7.2
Fatore de .
Etapa 2.5.5.3.7.3
Fatore de .
Etapa 2.5.5.3.7.4
Fatore de .
Etapa 2.5.5.3.7.5
Fatore de .
Etapa 2.5.5.3.8
Fatore de .
Etapa 2.5.5.3.9
Reescreva como .
Etapa 2.5.5.3.10
Fatore de .
Etapa 2.5.5.3.11
Fatore de .
Etapa 2.5.5.3.12
Fatore de .
Etapa 2.5.5.3.13
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.5.5.3.13.1
Reescreva como .
Etapa 2.5.5.3.13.2
Mova o número negativo para a frente da fração.
Etapa 2.6
Substitua por .
Etapa 3
Defina a derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 3.1
Defina o numerador como igual a zero.
Etapa 3.2
Resolva a equação para .
Toque para ver mais passagens...
Etapa 3.2.1
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 3.2.2
Defina como igual a .
Etapa 3.2.3
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 3.2.3.1
Defina como igual a .
Etapa 3.2.3.2
Resolva para .
Toque para ver mais passagens...
Etapa 3.2.3.2.1
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 3.2.3.2.1.1
Some aos dois lados da equação.
Etapa 3.2.3.2.1.2
Subtraia dos dois lados da equação.
Etapa 3.2.3.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.2.3.2.2.1
Divida cada termo em por .
Etapa 3.2.3.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.3.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.3.2.2.2.1.1
Cancele o fator comum.
Etapa 3.2.3.2.2.2.1.2
Divida por .
Etapa 3.2.3.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.3.2.2.3.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 3.2.3.2.2.3.1.1
Fatore de .
Etapa 3.2.3.2.2.3.1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 3.2.3.2.2.3.1.2.1
Fatore de .
Etapa 3.2.3.2.2.3.1.2.2
Cancele o fator comum.
Etapa 3.2.3.2.2.3.1.2.3
Reescreva a expressão.
Etapa 3.2.3.2.2.3.1.2.4
Divida por .
Etapa 3.2.3.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 3.2.3.2.4
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.3.2.4.1
Reescreva como .
Etapa 3.2.3.2.4.2
Reescreva como .
Etapa 3.2.3.2.4.3
Reescreva como .
Etapa 3.2.3.2.4.4
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 3.2.3.2.4.5
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.2.3.2.4.6
Simplifique os termos.
Toque para ver mais passagens...
Etapa 3.2.3.2.4.6.1
Combine e .
Etapa 3.2.3.2.4.6.2
Combine os numeradores em relação ao denominador comum.
Etapa 3.2.3.2.4.7
Mova para a esquerda de .
Etapa 3.2.3.2.4.8
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.2.3.2.4.9
Combine e .
Etapa 3.2.3.2.4.10
Combine os numeradores em relação ao denominador comum.
Etapa 3.2.3.2.4.11
Multiplique por .
Etapa 3.2.3.2.4.12
Multiplique por .
Etapa 3.2.3.2.4.13
Multiplique por .
Etapa 3.2.3.2.4.14
Reescreva como .
Toque para ver mais passagens...
Etapa 3.2.3.2.4.14.1
Fatore a potência perfeita de .
Etapa 3.2.3.2.4.14.2
Fatore a potência perfeita de .
Etapa 3.2.3.2.4.14.3
Reorganize a fração .
Etapa 3.2.3.2.4.15
Elimine os termos abaixo do radical.
Etapa 3.2.3.2.4.16
Combine e .
Etapa 3.2.3.2.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 3.2.3.2.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.2.3.2.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.2.3.2.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3.2.4
A solução final são todos os valores que tornam verdadeiro.
Etapa 4
Solve the function at .
Toque para ver mais passagens...
Etapa 4.1
Substitua a variável por na expressão.
Etapa 4.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 4.2.1
Elevar a qualquer potência positiva produz .
Etapa 4.2.2
Subtraia de .
Etapa 4.2.3
Multiplique por .
Etapa 4.2.4
A resposta final é .
Etapa 5
Solve the function at .
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.2.1.1
Aplique a regra do produto a .
Etapa 5.2.1.2
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 5.2.1.2.1
Reescreva como .
Toque para ver mais passagens...
Etapa 5.2.1.2.1.1
Use para reescrever como .
Etapa 5.2.1.2.1.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 5.2.1.2.1.3
Combine e .
Etapa 5.2.1.2.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.2.1.2.1.4.1
Cancele o fator comum.
Etapa 5.2.1.2.1.4.2
Reescreva a expressão.
Etapa 5.2.1.2.1.5
Simplifique.
Etapa 5.2.1.2.2
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 5.2.1.2.2.1
Aplique a propriedade distributiva.
Etapa 5.2.1.2.2.2
Aplique a propriedade distributiva.
Etapa 5.2.1.2.2.3
Aplique a propriedade distributiva.
Etapa 5.2.1.2.3
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 5.2.1.2.3.1
Reorganize os fatores nos termos e .
Etapa 5.2.1.2.3.2
Some e .
Etapa 5.2.1.2.3.3
Some e .
Etapa 5.2.1.2.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.2.1.2.4.1
Multiplique por .
Etapa 5.2.1.2.4.2
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 5.2.1.2.4.3
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 5.2.1.2.4.3.1
Mova .
Etapa 5.2.1.2.4.3.2
Multiplique por .
Etapa 5.2.1.2.4.4
Multiplique por .
Etapa 5.2.1.2.5
Reescreva como .
Etapa 5.2.1.2.6
Reescreva como .
Etapa 5.2.1.2.7
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 5.2.1.2.8
Multiplique por .
Etapa 5.2.1.3
Eleve à potência de .
Etapa 5.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 5.2.3
Simplifique os termos.
Toque para ver mais passagens...
Etapa 5.2.3.1
Combine e .
Etapa 5.2.3.2
Combine os numeradores em relação ao denominador comum.
Etapa 5.2.4
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 5.2.4.1
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 5.2.4.1.1
Aplique a propriedade distributiva.
Etapa 5.2.4.1.2
Aplique a propriedade distributiva.
Etapa 5.2.4.1.3
Aplique a propriedade distributiva.
Etapa 5.2.4.2
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 5.2.4.2.1
Reorganize os fatores nos termos e .
Etapa 5.2.4.2.2
Some e .
Etapa 5.2.4.2.3
Some e .
Etapa 5.2.4.3
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.2.4.3.1
Multiplique por .
Etapa 5.2.4.3.2
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 5.2.4.3.3
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 5.2.4.3.3.1
Mova .
Etapa 5.2.4.3.3.2
Multiplique por .
Etapa 5.2.4.3.4
Multiplique por .
Etapa 5.2.4.4
Multiplique por .
Etapa 5.2.4.5
Subtraia de .
Etapa 5.2.5
Combine e .
Etapa 5.2.6
A resposta final é .
Etapa 6
The horizontal tangent lines are
Etapa 7