Cálculo Exemplos

Encontre o Máximo e Mínimo Local f(x)=x^2-8 logaritmo natural de x
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
A derivada de em relação a é .
Etapa 1.2.3
Combine e .
Etapa 1.2.4
Mova o número negativo para a frente da fração.
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Reescreva como .
Etapa 2.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.4
Multiplique por .
Etapa 2.4
Simplifique.
Toque para ver mais passagens...
Etapa 2.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 2.4.2
Combine e .
Etapa 2.4.3
Reordene os termos.
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1.1
Diferencie.
Toque para ver mais passagens...
Etapa 4.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2
Avalie .
Toque para ver mais passagens...
Etapa 4.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.2
A derivada de em relação a é .
Etapa 4.1.2.3
Combine e .
Etapa 4.1.2.4
Mova o número negativo para a frente da fração.
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 5.2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 5.2.2
O MMC de um e qualquer expressão é a expressão.
Etapa 5.3
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 5.3.1
Multiplique cada termo em por .
Etapa 5.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.3.2.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 5.3.2.1.1.1
Mova .
Etapa 5.3.2.1.1.2
Multiplique por .
Etapa 5.3.2.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.3.2.1.2.1
Mova o negativo de maior ordem em para o numerador.
Etapa 5.3.2.1.2.2
Cancele o fator comum.
Etapa 5.3.2.1.2.3
Reescreva a expressão.
Etapa 5.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.3.3.1
Multiplique por .
Etapa 5.4
Resolva a equação.
Toque para ver mais passagens...
Etapa 5.4.1
Some aos dois lados da equação.
Etapa 5.4.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 5.4.2.1
Divida cada termo em por .
Etapa 5.4.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.4.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.4.2.2.1.1
Cancele o fator comum.
Etapa 5.4.2.2.1.2
Divida por .
Etapa 5.4.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.4.2.3.1
Divida por .
Etapa 5.4.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 5.4.4
Simplifique .
Toque para ver mais passagens...
Etapa 5.4.4.1
Reescreva como .
Etapa 5.4.4.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 5.4.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 5.4.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 5.4.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 5.4.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 6
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 6.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 9.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 9.1.1
Eleve à potência de .
Etapa 9.1.2
Divida por .
Etapa 9.2
Some e .
Etapa 10
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 11
Encontre o valor y quando .
Toque para ver mais passagens...
Etapa 11.1
Substitua a variável por na expressão.
Etapa 11.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 11.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 11.2.1.1
Eleve à potência de .
Etapa 11.2.1.2
Simplifique movendo para dentro do logaritmo.
Etapa 11.2.1.3
Eleve à potência de .
Etapa 11.2.2
A resposta final é .
Etapa 12
Esses são os extremos locais para .
é um mínimo local
Etapa 13