Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 1.1.3
Substitua todas as ocorrências de por .
Etapa 1.2
Diferencie.
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.3
Some e .
Etapa 1.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.6
Multiplique por .
Etapa 1.3
Simplifique.
Etapa 1.3.1
Reordene os fatores de .
Etapa 1.3.2
Reordene os fatores em .
Etapa 2
Etapa 2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.3.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 2.3.3
Substitua todas as ocorrências de por .
Etapa 2.4
Diferencie.
Etapa 2.4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.4.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.3
Some e .
Etapa 2.4.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4.6
Multiplique por .
Etapa 2.5
Eleve à potência de .
Etapa 2.6
Eleve à potência de .
Etapa 2.7
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.8
Simplifique a expressão.
Etapa 2.8.1
Some e .
Etapa 2.8.2
Mova para a esquerda de .
Etapa 2.9
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.10
Multiplique por .
Etapa 2.11
Simplifique.
Etapa 2.11.1
Aplique a propriedade distributiva.
Etapa 2.11.2
Multiplique por .
Etapa 2.11.3
Reordene os termos.
Etapa 2.11.4
Reordene os fatores em .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Etapa 4.1
Encontre a primeira derivada.
Etapa 4.1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 4.1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 4.1.1.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 4.1.1.3
Substitua todas as ocorrências de por .
Etapa 4.1.2
Diferencie.
Etapa 4.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.3
Some e .
Etapa 4.1.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2.6
Multiplique por .
Etapa 4.1.3
Simplifique.
Etapa 4.1.3.1
Reordene os fatores de .
Etapa 4.1.3.2
Reordene os fatores em .
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 5.3
Defina como igual a .
Etapa 5.4
Defina como igual a e resolva para .
Etapa 5.4.1
Defina como igual a .
Etapa 5.4.2
Resolva para .
Etapa 5.4.2.1
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 5.4.2.2
Não é possível resolver a equação, porque é indefinida.
Indefinido
Etapa 5.4.2.3
Não há uma solução para
Nenhuma solução
Nenhuma solução
Nenhuma solução
Etapa 5.5
A solução final são todos os valores que tornam verdadeiro.
Etapa 6
Etapa 6.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Etapa 9.1
Simplifique cada termo.
Etapa 9.1.1
Elevar a qualquer potência positiva produz .
Etapa 9.1.2
Multiplique por .
Etapa 9.1.3
Simplifique cada termo.
Etapa 9.1.3.1
Elevar a qualquer potência positiva produz .
Etapa 9.1.3.2
Multiplique por .
Etapa 9.1.4
Some e .
Etapa 9.1.5
Simplifique.
Etapa 9.1.6
Multiplique por .
Etapa 9.1.7
Simplifique cada termo.
Etapa 9.1.7.1
Elevar a qualquer potência positiva produz .
Etapa 9.1.7.2
Multiplique por .
Etapa 9.1.8
Some e .
Etapa 9.1.9
Simplifique.
Etapa 9.2
Subtraia de .
Etapa 10
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 11
Etapa 11.1
Substitua a variável por na expressão.
Etapa 11.2
Simplifique o resultado.
Etapa 11.2.1
Simplifique cada termo.
Etapa 11.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 11.2.1.2
Multiplique por .
Etapa 11.2.2
Some e .
Etapa 11.2.3
A resposta final é .
Etapa 12
Esses são os extremos locais para .
é um máximo local
Etapa 13