Cálculo Exemplos

Encontre a Antiderivada f(x)=6(2x+1)^5(2)
Etapa 1
É possível determinar a função encontrando a integral indefinida da derivada .
Etapa 2
Estabeleça a integral para resolver.
Etapa 3
Multiplique por .
Etapa 4
Como é constante com relação a , mova para fora da integral.
Etapa 5
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 5.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 5.1.1
Diferencie .
Etapa 5.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 5.1.3
Avalie .
Toque para ver mais passagens...
Etapa 5.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.3.3
Multiplique por .
Etapa 5.1.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 5.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.4.2
Some e .
Etapa 5.2
Reescreva o problema usando e .
Etapa 6
Combine e .
Etapa 7
Como é constante com relação a , mova para fora da integral.
Etapa 8
Simplifique.
Toque para ver mais passagens...
Etapa 8.1
Combine e .
Etapa 8.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 8.2.1
Fatore de .
Etapa 8.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 8.2.2.1
Fatore de .
Etapa 8.2.2.2
Cancele o fator comum.
Etapa 8.2.2.3
Reescreva a expressão.
Etapa 8.2.2.4
Divida por .
Etapa 9
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 10
Simplifique.
Toque para ver mais passagens...
Etapa 10.1
Reescreva como .
Etapa 10.2
Simplifique.
Toque para ver mais passagens...
Etapa 10.2.1
Combine e .
Etapa 10.2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 10.2.2.1
Cancele o fator comum.
Etapa 10.2.2.2
Reescreva a expressão.
Etapa 10.2.3
Multiplique por .
Etapa 11
Substitua todas as ocorrências de por .
Etapa 12
A resposta é a primitiva da função .