Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Etapa 1.3.1
Multiplique por .
Etapa 1.3.2
Multiplique por .
Etapa 1.3.3
Reordene os fatores de .
Etapa 1.4
Combine os numeradores em relação ao denominador comum.
Etapa 2
Etapa 2.1
Avalie o limite do numerador e o limite do denominador.
Etapa 2.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 2.1.2
Avalie o limite do numerador.
Etapa 2.1.2.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.1.2.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.2.3
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.1.2.4
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.1.2.5
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.1.2.6
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.2.7
Avalie os limites substituindo por todas as ocorrências de .
Etapa 2.1.2.7.1
Avalie o limite de substituindo por .
Etapa 2.1.2.7.2
Avalie o limite de substituindo por .
Etapa 2.1.2.8
Simplifique a resposta.
Etapa 2.1.2.8.1
Simplifique cada termo.
Etapa 2.1.2.8.1.1
Um elevado a qualquer potência é um.
Etapa 2.1.2.8.1.2
Multiplique por .
Etapa 2.1.2.8.1.3
Subtraia de .
Etapa 2.1.2.8.1.4
Multiplique por .
Etapa 2.1.2.8.2
Subtraia de .
Etapa 2.1.2.8.3
Some e .
Etapa 2.1.3
Avalie o limite do denominador.
Etapa 2.1.3.1
Divida o limite usando a regra do produto dos limites no limite em que se aproxima de .
Etapa 2.1.3.2
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.1.3.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.3.4
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.1.3.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.3.6
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.1.3.7
Avalie os limites substituindo por todas as ocorrências de .
Etapa 2.1.3.7.1
Avalie o limite de substituindo por .
Etapa 2.1.3.7.2
Avalie o limite de substituindo por .
Etapa 2.1.3.8
Simplifique a resposta.
Etapa 2.1.3.8.1
Subtraia de .
Etapa 2.1.3.8.2
Simplifique cada termo.
Etapa 2.1.3.8.2.1
Um elevado a qualquer potência é um.
Etapa 2.1.3.8.2.2
Multiplique por .
Etapa 2.1.3.8.3
Subtraia de .
Etapa 2.1.3.8.4
Multiplique por .
Etapa 2.1.3.8.5
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.3.9
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 2.3
Encontre a derivada do numerador e do denominador.
Etapa 2.3.1
Diferencie o numerador e o denominador.
Etapa 2.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.4
Avalie .
Etapa 2.3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.4.3
Multiplique por .
Etapa 2.3.5
Avalie .
Etapa 2.3.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.5.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.5.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.5.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.5.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.5.6
Multiplique por .
Etapa 2.3.5.7
Subtraia de .
Etapa 2.3.5.8
Multiplique por .
Etapa 2.3.6
Subtraia de .
Etapa 2.3.7
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.3.8
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.10
Some e .
Etapa 2.3.11
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.12
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.13
Multiplique por .
Etapa 2.3.14
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.15
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.16
Some e .
Etapa 2.3.17
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.18
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.19
Multiplique por .
Etapa 2.3.20
Mova para a esquerda de .
Etapa 2.3.21
Reescreva como .
Etapa 2.3.22
Simplifique.
Etapa 2.3.22.1
Aplique a propriedade distributiva.
Etapa 2.3.22.2
Aplique a propriedade distributiva.
Etapa 2.3.22.3
Combine os termos.
Etapa 2.3.22.3.1
Multiplique por .
Etapa 2.3.22.3.2
Multiplique por .
Etapa 2.3.22.3.3
Eleve à potência de .
Etapa 2.3.22.3.4
Eleve à potência de .
Etapa 2.3.22.3.5
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.3.22.3.6
Some e .
Etapa 2.3.22.3.7
Multiplique por .
Etapa 2.3.22.3.8
Multiplique por .
Etapa 2.3.22.3.9
Multiplique por .
Etapa 2.3.22.3.10
Some e .
Etapa 2.3.22.4
Reordene os termos.
Etapa 3
Etapa 3.1
Avalie o limite do numerador e o limite do denominador.
Etapa 3.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 3.1.2
Avalie o limite do numerador.
Etapa 3.1.2.1
Avalie o limite.
Etapa 3.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 3.1.2.1.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.1.2.1.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3.1.2.2
Avalie o limite de substituindo por .
Etapa 3.1.2.3
Simplifique a resposta.
Etapa 3.1.2.3.1
Multiplique por .
Etapa 3.1.2.3.2
Some e .
Etapa 3.1.3
Avalie o limite do denominador.
Etapa 3.1.3.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 3.1.3.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.1.3.3
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 3.1.3.4
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.1.3.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3.1.3.6
Avalie os limites substituindo por todas as ocorrências de .
Etapa 3.1.3.6.1
Avalie o limite de substituindo por .
Etapa 3.1.3.6.2
Avalie o limite de substituindo por .
Etapa 3.1.3.7
Simplifique a resposta.
Etapa 3.1.3.7.1
Simplifique cada termo.
Etapa 3.1.3.7.1.1
Um elevado a qualquer potência é um.
Etapa 3.1.3.7.1.2
Multiplique por .
Etapa 3.1.3.7.1.3
Multiplique por .
Etapa 3.1.3.7.1.4
Multiplique por .
Etapa 3.1.3.7.2
Subtraia de .
Etapa 3.1.3.7.3
Subtraia de .
Etapa 3.1.3.7.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.1.3.8
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 3.3
Encontre a derivada do numerador e do denominador.
Etapa 3.3.1
Diferencie o numerador e o denominador.
Etapa 3.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3.3
Avalie .
Etapa 3.3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.3.3
Multiplique por .
Etapa 3.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.5
Some e .
Etapa 3.3.6
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3.7
Avalie .
Etapa 3.3.7.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.7.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.7.3
Multiplique por .
Etapa 3.3.8
Avalie .
Etapa 3.3.8.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.8.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.8.3
Multiplique por .
Etapa 3.3.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.10
Some e .
Etapa 3.4
Cancele o fator comum de e .
Etapa 3.4.1
Fatore de .
Etapa 3.4.2
Cancele os fatores comuns.
Etapa 3.4.2.1
Fatore de .
Etapa 3.4.2.2
Fatore de .
Etapa 3.4.2.3
Fatore de .
Etapa 3.4.2.4
Cancele o fator comum.
Etapa 3.4.2.5
Reescreva a expressão.
Etapa 4
Etapa 4.1
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 4.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 4.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 4.4
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 4.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 5
Avalie o limite de substituindo por .
Etapa 6
Etapa 6.1
Simplifique o denominador.
Etapa 6.1.1
Multiplique por .
Etapa 6.1.2
Multiplique por .
Etapa 6.1.3
Subtraia de .
Etapa 6.2
Mova o número negativo para a frente da fração.
Etapa 7
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: