Insira um problema...
Cálculo Exemplos
Etapa 1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3
Etapa 3.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 3.3
Substitua todas as ocorrências de por .
Etapa 4
Etapa 4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.3
Simplifique a expressão.
Etapa 4.3.1
Multiplique por .
Etapa 4.3.2
Mova para a esquerda de .
Etapa 5
Etapa 5.1
Para aplicar a regra da cadeia, defina como .
Etapa 5.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 5.3
Substitua todas as ocorrências de por .
Etapa 6
Etapa 6.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 6.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 6.3
Simplifique a expressão.
Etapa 6.3.1
Multiplique por .
Etapa 6.3.2
Mova para a esquerda de .
Etapa 6.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 6.5
Multiplique por .
Etapa 7
Etapa 7.1
Aplique a propriedade distributiva.
Etapa 7.2
Aplique a propriedade distributiva.
Etapa 7.3
Simplifique cada termo.
Etapa 7.3.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 7.3.2
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 7.4
Reordene os termos.
Etapa 7.5
Reordene os fatores em .