Cálculo Exemplos

Encontre o Máximo e Mínimo Local f(x)=cos(pix)
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2
A derivada de em relação a é .
Etapa 1.1.3
Substitua todas as ocorrências de por .
Etapa 1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.2.3.1
Multiplique por .
Etapa 1.2.3.2
Reordene os fatores de .
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2
A derivada de em relação a é .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4
Eleve à potência de .
Etapa 2.5
Eleve à potência de .
Etapa 2.6
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.7
Some e .
Etapa 2.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.9
Multiplique por .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.1
Divida cada termo em por .
Etapa 4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 4.2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.2.2.1
Cancele o fator comum.
Etapa 4.2.2.2
Divida por .
Etapa 4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.3.1
Divida por .
Etapa 5
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 6
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.1
O valor exato de é .
Etapa 7
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 7.1
Divida cada termo em por .
Etapa 7.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 7.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 7.2.1.1
Cancele o fator comum.
Etapa 7.2.1.2
Divida por .
Etapa 7.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 7.3.1
Divida por .
Etapa 8
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 9
Resolva .
Toque para ver mais passagens...
Etapa 9.1
Simplifique.
Toque para ver mais passagens...
Etapa 9.1.1
Multiplique por .
Etapa 9.1.2
Some e .
Etapa 9.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 9.2.1
Divida cada termo em por .
Etapa 9.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 9.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 9.2.2.1.1
Cancele o fator comum.
Etapa 9.2.2.1.2
Divida por .
Etapa 9.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 9.2.3.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 9.2.3.1.1
Cancele o fator comum.
Etapa 9.2.3.1.2
Reescreva a expressão.
Etapa 10
A solução para a equação .
Etapa 11
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 12
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 12.1
Multiplique por .
Etapa 12.2
O valor exato de é .
Etapa 12.3
Multiplique por .
Etapa 13
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 14
Encontre o valor y quando .
Toque para ver mais passagens...
Etapa 14.1
Substitua a variável por na expressão.
Etapa 14.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 14.2.1
Multiplique por .
Etapa 14.2.2
O valor exato de é .
Etapa 14.2.3
A resposta final é .
Etapa 15
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 16
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 16.1
Multiplique por .
Etapa 16.2
Aplique o ângulo de referência encontrando o ângulo com valores trigonométricos equivalentes no primeiro quadrante. Torne a expressão negativa, pois o cosseno é negativo no segundo quadrante.
Etapa 16.3
O valor exato de é .
Etapa 16.4
Multiplique por .
Etapa 16.5
Multiplique .
Toque para ver mais passagens...
Etapa 16.5.1
Multiplique por .
Etapa 16.5.2
Multiplique por .
Etapa 17
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 18
Encontre o valor y quando .
Toque para ver mais passagens...
Etapa 18.1
Substitua a variável por na expressão.
Etapa 18.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 18.2.1
Multiplique por .
Etapa 18.2.2
Aplique o ângulo de referência encontrando o ângulo com valores trigonométricos equivalentes no primeiro quadrante. Torne a expressão negativa, pois o cosseno é negativo no segundo quadrante.
Etapa 18.2.3
O valor exato de é .
Etapa 18.2.4
Multiplique por .
Etapa 18.2.5
A resposta final é .
Etapa 19
Esses são os extremos locais para .
é um máximo local
é um mínimo local
Etapa 20