Cálculo Exemplos

Encontre a Antiderivada f(x)=sec(x)^2
f(x)=sec2(x)
Etapa 1
É possível determinar a função F(x) encontrando a integral indefinida da derivada f(x).
F(x)=f(x)dx
Etapa 2
Estabeleça a integral para resolver.
F(x)=sec2(x)dx
Etapa 3
Como a derivada de tan(x) é sec2(x), a integral de sec2(x) é tan(x).
tan(x)+C
Etapa 4
A resposta é a primitiva da função f(x)=sec2(x).
F(x)=tan(x)+C
f(x)=sec2(x)
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]