Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Deixe . Encontre .
Etapa 1.1.1
Diferencie .
Etapa 1.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.4
Multiplique por .
Etapa 1.2
Reescreva o problema usando e .
Etapa 2
Combine e .
Etapa 3
Como é constante com relação a , mova para fora da integral.
Etapa 4
Use a fórmula do arco metade para reescrever como .
Etapa 5
Como é constante com relação a , mova para fora da integral.
Etapa 6
Etapa 6.1
Multiplique por .
Etapa 6.2
Multiplique por .
Etapa 7
Divida a integral única em várias integrais.
Etapa 8
Aplique a regra da constante.
Etapa 9
Como é constante com relação a , mova para fora da integral.
Etapa 10
Etapa 10.1
Deixe . Encontre .
Etapa 10.1.1
Diferencie .
Etapa 10.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 10.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 10.1.4
Multiplique por .
Etapa 10.2
Reescreva o problema usando e .
Etapa 11
Combine e .
Etapa 12
Como é constante com relação a , mova para fora da integral.
Etapa 13
A integral de com relação a é .
Etapa 14
Simplifique.
Etapa 15
Etapa 15.1
Substitua todas as ocorrências de por .
Etapa 15.2
Substitua todas as ocorrências de por .
Etapa 15.3
Substitua todas as ocorrências de por .
Etapa 16
Etapa 16.1
Simplifique cada termo.
Etapa 16.1.1
Multiplique por .
Etapa 16.1.2
Combine e .
Etapa 16.2
Aplique a propriedade distributiva.
Etapa 16.3
Cancele o fator comum de .
Etapa 16.3.1
Fatore de .
Etapa 16.3.2
Fatore de .
Etapa 16.3.3
Cancele o fator comum.
Etapa 16.3.4
Reescreva a expressão.
Etapa 16.4
Combine e .
Etapa 16.5
Multiplique .
Etapa 16.5.1
Multiplique por .
Etapa 16.5.2
Multiplique por .
Etapa 17
Reordene os termos.