Cálculo Exemplos

Encontre o Máximo e Mínimo Local f(x)=3x^5-5x^3
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.2
Avalie .
Toque para ver mais passagens...
Etapa 4.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2.3
Multiplique por .
Etapa 4.1.3
Avalie .
Toque para ver mais passagens...
Etapa 4.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.3.3
Multiplique por .
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Fatore o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 5.2.1
Reescreva como .
Etapa 5.2.2
Deixe . Substitua em todas as ocorrências de .
Etapa 5.2.3
Fatore de .
Toque para ver mais passagens...
Etapa 5.2.3.1
Fatore de .
Etapa 5.2.3.2
Fatore de .
Etapa 5.2.3.3
Fatore de .
Etapa 5.2.4
Substitua todas as ocorrências de por .
Etapa 5.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 5.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 5.4.1
Defina como igual a .
Etapa 5.4.2
Resolva para .
Toque para ver mais passagens...
Etapa 5.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 5.4.2.2
Simplifique .
Toque para ver mais passagens...
Etapa 5.4.2.2.1
Reescreva como .
Etapa 5.4.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 5.4.2.2.3
Mais ou menos é .
Etapa 5.5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 5.5.1
Defina como igual a .
Etapa 5.5.2
Resolva para .
Toque para ver mais passagens...
Etapa 5.5.2.1
Some aos dois lados da equação.
Etapa 5.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 5.5.2.3
Qualquer raiz de é .
Etapa 5.5.2.4
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 5.5.2.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 5.5.2.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 5.5.2.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 6
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 6.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 9.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 9.1.1
Elevar a qualquer potência positiva produz .
Etapa 9.1.2
Multiplique por .
Etapa 9.1.3
Multiplique por .
Etapa 9.2
Some e .
Etapa 10
Como há pelo menos um ponto com ou segunda derivada indefinida, aplique o teste da primeira derivada.
Toque para ver mais passagens...
Etapa 10.1
Divida em intervalos separados em torno dos valores de que tornam a primeira derivada ou indefinida.
Etapa 10.2
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 10.2.1
Substitua a variável por na expressão.
Etapa 10.2.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 10.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.2.2.1.1
Eleve à potência de .
Etapa 10.2.2.1.2
Multiplique por .
Etapa 10.2.2.1.3
Eleve à potência de .
Etapa 10.2.2.1.4
Multiplique por .
Etapa 10.2.2.2
Subtraia de .
Etapa 10.2.2.3
A resposta final é .
Etapa 10.3
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 10.3.1
Substitua a variável por na expressão.
Etapa 10.3.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 10.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.3.2.1.1
Eleve à potência de .
Etapa 10.3.2.1.2
Multiplique por .
Etapa 10.3.2.1.3
Eleve à potência de .
Etapa 10.3.2.1.4
Multiplique por .
Etapa 10.3.2.2
Subtraia de .
Etapa 10.3.2.3
A resposta final é .
Etapa 10.4
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 10.4.1
Substitua a variável por na expressão.
Etapa 10.4.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 10.4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.4.2.1.1
Eleve à potência de .
Etapa 10.4.2.1.2
Multiplique por .
Etapa 10.4.2.1.3
Eleve à potência de .
Etapa 10.4.2.1.4
Multiplique por .
Etapa 10.4.2.2
Subtraia de .
Etapa 10.4.2.3
A resposta final é .
Etapa 10.5
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 10.5.1
Substitua a variável por na expressão.
Etapa 10.5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 10.5.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.5.2.1.1
Eleve à potência de .
Etapa 10.5.2.1.2
Multiplique por .
Etapa 10.5.2.1.3
Eleve à potência de .
Etapa 10.5.2.1.4
Multiplique por .
Etapa 10.5.2.2
Subtraia de .
Etapa 10.5.2.3
A resposta final é .
Etapa 10.6
Como a primeira derivada mudou os sinais de positivo para negativo em torno de , então é um máximo local.
é um máximo local
Etapa 10.7
Como a primeira derivada não mudou os sinais em torno de , este não é um máximo local nem um mínimo local.
Não é um máximo nem um mínimo local
Etapa 10.8
Como a primeira derivada mudou os sinais de negativo para positivo em torno de , então é um mínimo local.
é um mínimo local
Etapa 10.9
Esses são os extremos locais para .
é um máximo local
é um mínimo local
é um máximo local
é um mínimo local
Etapa 11