Cálculo Exemplos

Encontre a Reta Tangente Horizontal y=x^2+2x
Etapa 1
Defina como uma função de .
Etapa 2
Encontre a derivada.
Toque para ver mais passagens...
Etapa 2.1
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 3
Defina a derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 3.1
Subtraia dos dois lados da equação.
Etapa 3.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.2.1
Divida cada termo em por .
Etapa 3.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.2.1.1
Cancele o fator comum.
Etapa 3.2.2.1.2
Divida por .
Etapa 3.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.3.1
Divida por .
Etapa 4
Resolva a função original em .
Toque para ver mais passagens...
Etapa 4.1
Substitua a variável por na expressão.
Etapa 4.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.2.1.1
Eleve à potência de .
Etapa 4.2.1.2
Multiplique por .
Etapa 4.2.2
Subtraia de .
Etapa 4.2.3
A resposta final é .
Etapa 5
A reta tangente horizontal na função é .
Etapa 6