Insira um problema...
Cálculo Exemplos
Etapa 1
Escreva como uma função.
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Diferencie usando a regra da constante.
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Some e .
Etapa 3
Etapa 3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2
Avalie .
Etapa 3.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.3
Multiplique por .
Etapa 3.3
Diferencie usando a regra da constante.
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Some e .
Etapa 4
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 5
Etapa 5.1
Encontre a primeira derivada.
Etapa 5.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 5.1.2
Avalie .
Etapa 5.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.2.3
Multiplique por .
Etapa 5.1.3
Avalie .
Etapa 5.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.3.3
Multiplique por .
Etapa 5.1.4
Diferencie usando a regra da constante.
Etapa 5.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.4.2
Some e .
Etapa 5.2
A primeira derivada de com relação a é .
Etapa 6
Etapa 6.1
Defina a primeira derivada como igual a .
Etapa 6.2
Some aos dois lados da equação.
Etapa 6.3
Divida cada termo em por e simplifique.
Etapa 6.3.1
Divida cada termo em por .
Etapa 6.3.2
Simplifique o lado esquerdo.
Etapa 6.3.2.1
Cancele o fator comum de .
Etapa 6.3.2.1.1
Cancele o fator comum.
Etapa 6.3.2.1.2
Divida por .
Etapa 6.3.3
Simplifique o lado direito.
Etapa 6.3.3.1
Divida por .
Etapa 7
Etapa 7.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 8
Pontos críticos para avaliar.
Etapa 9
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 10
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 11
Etapa 11.1
Substitua a variável por na expressão.
Etapa 11.2
Simplifique o resultado.
Etapa 11.2.1
Simplifique cada termo.
Etapa 11.2.1.1
Eleve à potência de .
Etapa 11.2.1.2
Multiplique por .
Etapa 11.2.1.3
Multiplique por .
Etapa 11.2.2
Simplifique subtraindo os números.
Etapa 11.2.2.1
Subtraia de .
Etapa 11.2.2.2
Subtraia de .
Etapa 11.2.3
A resposta final é .
Etapa 12
Esses são os extremos locais para .
é um mínimo local
Etapa 13