Cálculo Exemplos

Encontre o Máximo e Mínimo Absolutos sobre o Intervalo f(x)=3x^2-1 , [1,3]
,
Etapa 1
Encontre os pontos críticos.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2.3
Multiplique por .
Etapa 1.1.1.3
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.3.2
Some e .
Etapa 1.1.2
A primeira derivada de com relação a é .
Etapa 1.2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 1.2.1
Defina a primeira derivada como igual a .
Etapa 1.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.2.2.1
Divida cada termo em por .
Etapa 1.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.2.2.2.1.1
Cancele o fator comum.
Etapa 1.2.2.2.1.2
Divida por .
Etapa 1.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.2.2.3.1
Divida por .
Etapa 1.3
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 1.3.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 1.4
Avalie em cada valor em que a derivada é ou indefinida.
Toque para ver mais passagens...
Etapa 1.4.1
Avalie em .
Toque para ver mais passagens...
Etapa 1.4.1.1
Substitua por .
Etapa 1.4.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.1.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 1.4.1.2.1.2
Multiplique por .
Etapa 1.4.1.2.2
Subtraia de .
Etapa 1.4.2
Liste todos os pontos.
Etapa 2
Exclua os pontos que não estão no intervalo.
Etapa 3
Avalie nos pontos finais incluídos.
Toque para ver mais passagens...
Etapa 3.1
Avalie em .
Toque para ver mais passagens...
Etapa 3.1.1
Substitua por .
Etapa 3.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 3.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.1.2.1.1
Um elevado a qualquer potência é um.
Etapa 3.1.2.1.2
Multiplique por .
Etapa 3.1.2.2
Subtraia de .
Etapa 3.2
Avalie em .
Toque para ver mais passagens...
Etapa 3.2.1
Substitua por .
Etapa 3.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 3.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.2.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 3.2.2.1.1.1
Multiplique por .
Toque para ver mais passagens...
Etapa 3.2.2.1.1.1.1
Eleve à potência de .
Etapa 3.2.2.1.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.2.2.1.1.2
Some e .
Etapa 3.2.2.1.2
Eleve à potência de .
Etapa 3.2.2.2
Subtraia de .
Etapa 3.3
Liste todos os pontos.
Etapa 4
Compare os valores de encontrados para cada valor de para determinar o máximo e mínimo absolutos no intervalo determinado. O máximo ocorrerá no valor mais alto de , e o mínimo ocorrerá no valor mais baixo de .
Máximo absoluto:
Mínimo absoluto:
Etapa 5