Cálculo Exemplos

Determina o máximo e mínimo absolutos no intervalo dado f(x)=x^3-x-4 ; between 1 and 7
; between and
Etapa 1
Encontre os pontos críticos.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1.1
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2.3
Multiplique por .
Etapa 1.1.1.3
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.3.2
Some e .
Etapa 1.1.2
A primeira derivada de com relação a é .
Etapa 1.2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 1.2.1
Defina a primeira derivada como igual a .
Etapa 1.2.2
Some aos dois lados da equação.
Etapa 1.2.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.2.3.1
Divida cada termo em por .
Etapa 1.2.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.2.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.2.3.2.1.1
Cancele o fator comum.
Etapa 1.2.3.2.1.2
Divida por .
Etapa 1.2.4
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 1.2.5
Simplifique .
Toque para ver mais passagens...
Etapa 1.2.5.1
Reescreva como .
Etapa 1.2.5.2
Qualquer raiz de é .
Etapa 1.2.5.3
Multiplique por .
Etapa 1.2.5.4
Combine e simplifique o denominador.
Toque para ver mais passagens...
Etapa 1.2.5.4.1
Multiplique por .
Etapa 1.2.5.4.2
Eleve à potência de .
Etapa 1.2.5.4.3
Eleve à potência de .
Etapa 1.2.5.4.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.2.5.4.5
Some e .
Etapa 1.2.5.4.6
Reescreva como .
Toque para ver mais passagens...
Etapa 1.2.5.4.6.1
Use para reescrever como .
Etapa 1.2.5.4.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 1.2.5.4.6.3
Combine e .
Etapa 1.2.5.4.6.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.2.5.4.6.4.1
Cancele o fator comum.
Etapa 1.2.5.4.6.4.2
Reescreva a expressão.
Etapa 1.2.5.4.6.5
Avalie o expoente.
Etapa 1.2.6
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 1.2.6.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 1.2.6.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 1.2.6.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 1.3
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 1.3.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 1.4
Avalie em cada valor em que a derivada é ou indefinida.
Toque para ver mais passagens...
Etapa 1.4.1
Avalie em .
Toque para ver mais passagens...
Etapa 1.4.1.1
Substitua por .
Etapa 1.4.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.1.2.1.1
Aplique a regra do produto a .
Etapa 1.4.1.2.1.2
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.4.1.2.1.2.1
Reescreva como .
Etapa 1.4.1.2.1.2.2
Eleve à potência de .
Etapa 1.4.1.2.1.2.3
Reescreva como .
Toque para ver mais passagens...
Etapa 1.4.1.2.1.2.3.1
Fatore de .
Etapa 1.4.1.2.1.2.3.2
Reescreva como .
Etapa 1.4.1.2.1.2.4
Elimine os termos abaixo do radical.
Etapa 1.4.1.2.1.3
Eleve à potência de .
Etapa 1.4.1.2.1.4
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.4.1.2.1.4.1
Fatore de .
Etapa 1.4.1.2.1.4.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.4.1.2.1.4.2.1
Fatore de .
Etapa 1.4.1.2.1.4.2.2
Cancele o fator comum.
Etapa 1.4.1.2.1.4.2.3
Reescreva a expressão.
Etapa 1.4.1.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.4.1.2.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 1.4.1.2.3.1
Multiplique por .
Etapa 1.4.1.2.3.2
Multiplique por .
Etapa 1.4.1.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 1.4.1.2.5
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.1.2.5.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.4.1.2.5.1.1
Multiplique por .
Etapa 1.4.1.2.5.1.2
Subtraia de .
Etapa 1.4.1.2.5.2
Mova o número negativo para a frente da fração.
Etapa 1.4.2
Avalie em .
Toque para ver mais passagens...
Etapa 1.4.2.1
Substitua por .
Etapa 1.4.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.2.2.1.1
Use a regra da multiplicação de potências para distribuir o expoente.
Toque para ver mais passagens...
Etapa 1.4.2.2.1.1.1
Aplique a regra do produto a .
Etapa 1.4.2.2.1.1.2
Aplique a regra do produto a .
Etapa 1.4.2.2.1.2
Eleve à potência de .
Etapa 1.4.2.2.1.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.4.2.2.1.3.1
Reescreva como .
Etapa 1.4.2.2.1.3.2
Eleve à potência de .
Etapa 1.4.2.2.1.3.3
Reescreva como .
Toque para ver mais passagens...
Etapa 1.4.2.2.1.3.3.1
Fatore de .
Etapa 1.4.2.2.1.3.3.2
Reescreva como .
Etapa 1.4.2.2.1.3.4
Elimine os termos abaixo do radical.
Etapa 1.4.2.2.1.4
Eleve à potência de .
Etapa 1.4.2.2.1.5
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.4.2.2.1.5.1
Fatore de .
Etapa 1.4.2.2.1.5.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.4.2.2.1.5.2.1
Fatore de .
Etapa 1.4.2.2.1.5.2.2
Cancele o fator comum.
Etapa 1.4.2.2.1.5.2.3
Reescreva a expressão.
Etapa 1.4.2.2.1.6
Multiplique .
Toque para ver mais passagens...
Etapa 1.4.2.2.1.6.1
Multiplique por .
Etapa 1.4.2.2.1.6.2
Multiplique por .
Etapa 1.4.2.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.4.2.2.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 1.4.2.2.3.1
Multiplique por .
Etapa 1.4.2.2.3.2
Multiplique por .
Etapa 1.4.2.2.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.4.2.2.4.1
Combine os numeradores em relação ao denominador comum.
Etapa 1.4.2.2.4.2
Reordene os fatores de .
Etapa 1.4.2.2.5
Some e .
Etapa 1.4.3
Liste todos os pontos.
Etapa 2
Exclua os pontos que não estão no intervalo.
Etapa 3
Avalie nos pontos finais incluídos.
Toque para ver mais passagens...
Etapa 3.1
Avalie em .
Toque para ver mais passagens...
Etapa 3.1.1
Substitua por .
Etapa 3.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 3.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.1.2.1.1
Um elevado a qualquer potência é um.
Etapa 3.1.2.1.2
Multiplique por .
Etapa 3.1.2.2
Simplifique subtraindo os números.
Toque para ver mais passagens...
Etapa 3.1.2.2.1
Subtraia de .
Etapa 3.1.2.2.2
Subtraia de .
Etapa 3.2
Avalie em .
Toque para ver mais passagens...
Etapa 3.2.1
Substitua por .
Etapa 3.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 3.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.2.1.1
Eleve à potência de .
Etapa 3.2.2.1.2
Multiplique por .
Etapa 3.2.2.2
Simplifique subtraindo os números.
Toque para ver mais passagens...
Etapa 3.2.2.2.1
Subtraia de .
Etapa 3.2.2.2.2
Subtraia de .
Etapa 3.3
Liste todos os pontos.
Etapa 4
Compare os valores de encontrados para cada valor de para determinar o máximo e mínimo absolutos no intervalo determinado. O máximo ocorrerá no valor mais alto de , e o mínimo ocorrerá no valor mais baixo de .
Máximo absoluto:
Mínimo absoluto:
Etapa 5