Cálculo Exemplos

Determina o máximo e mínimo absolutos no intervalo dado f(x)=2(3-x) , [-1,2]
,
Etapa 1
Encontre os pontos críticos.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.4
Some e .
Etapa 1.1.1.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.6
Multiplique por .
Etapa 1.1.1.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.8
Multiplique por .
Etapa 1.1.2
A primeira derivada de com relação a é .
Etapa 1.2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 1.2.1
Defina a primeira derivada como igual a .
Etapa 1.2.2
Como , não há soluções.
Nenhuma solução
Nenhuma solução
Etapa 1.3
Não há valores de no domínio do problema original, em que a derivada é ou indefinida.
Nenhum ponto crítico encontrado
Nenhum ponto crítico encontrado
Etapa 2
Avalie nos pontos finais incluídos.
Toque para ver mais passagens...
Etapa 2.1
Avalie em .
Toque para ver mais passagens...
Etapa 2.1.1
Substitua por .
Etapa 2.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.1.2.1
Multiplique por .
Etapa 2.1.2.2
Some e .
Etapa 2.1.2.3
Multiplique por .
Etapa 2.2
Avalie em .
Toque para ver mais passagens...
Etapa 2.2.1
Substitua por .
Etapa 2.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.2.2.1
Multiplique por .
Etapa 2.2.2.2
Subtraia de .
Etapa 2.2.2.3
Multiplique por .
Etapa 2.3
Liste todos os pontos.
Etapa 3
Compare os valores de encontrados para cada valor de para determinar o máximo e mínimo absolutos no intervalo determinado. O máximo ocorrerá no valor mais alto de , e o mínimo ocorrerá no valor mais baixo de .
Máximo absoluto:
Mínimo absoluto:
Etapa 4