Cálculo Exemplos

Determina o máximo e mínimo absolutos no intervalo dado f(x)=x^3+x^2-5x+8 ; (0,infinity)
;
Etapa 1
Encontre os pontos críticos.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1.1
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2.3
Multiplique por .
Etapa 1.1.1.3
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.3.2
Some e .
Etapa 1.1.2
A primeira derivada de com relação a é .
Etapa 1.2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 1.2.1
Defina a primeira derivada como igual a .
Etapa 1.2.2
Fatore por agrupamento.
Toque para ver mais passagens...
Etapa 1.2.2.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Toque para ver mais passagens...
Etapa 1.2.2.1.1
Fatore de .
Etapa 1.2.2.1.2
Reescreva como mais
Etapa 1.2.2.1.3
Aplique a propriedade distributiva.
Etapa 1.2.2.2
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 1.2.2.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 1.2.2.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 1.2.2.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 1.2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 1.2.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 1.2.4.1
Defina como igual a .
Etapa 1.2.4.2
Some aos dois lados da equação.
Etapa 1.2.5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 1.2.5.1
Defina como igual a .
Etapa 1.2.5.2
Resolva para .
Toque para ver mais passagens...
Etapa 1.2.5.2.1
Subtraia dos dois lados da equação.
Etapa 1.2.5.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.2.5.2.2.1
Divida cada termo em por .
Etapa 1.2.5.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.2.5.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.2.5.2.2.2.1.1
Cancele o fator comum.
Etapa 1.2.5.2.2.2.1.2
Divida por .
Etapa 1.2.5.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.2.5.2.2.3.1
Mova o número negativo para a frente da fração.
Etapa 1.2.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 1.3
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 1.3.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 1.4
Avalie em cada valor em que a derivada é ou indefinida.
Toque para ver mais passagens...
Etapa 1.4.1
Avalie em .
Toque para ver mais passagens...
Etapa 1.4.1.1
Substitua por .
Etapa 1.4.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.1.2.1.1
Um elevado a qualquer potência é um.
Etapa 1.4.1.2.1.2
Um elevado a qualquer potência é um.
Etapa 1.4.1.2.1.3
Multiplique por .
Etapa 1.4.1.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 1.4.1.2.2.1
Some e .
Etapa 1.4.1.2.2.2
Subtraia de .
Etapa 1.4.1.2.2.3
Some e .
Etapa 1.4.2
Avalie em .
Toque para ver mais passagens...
Etapa 1.4.2.1
Substitua por .
Etapa 1.4.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.2.2.1.1
Use a regra da multiplicação de potências para distribuir o expoente.
Toque para ver mais passagens...
Etapa 1.4.2.2.1.1.1
Aplique a regra do produto a .
Etapa 1.4.2.2.1.1.2
Aplique a regra do produto a .
Etapa 1.4.2.2.1.2
Eleve à potência de .
Etapa 1.4.2.2.1.3
Eleve à potência de .
Etapa 1.4.2.2.1.4
Eleve à potência de .
Etapa 1.4.2.2.1.5
Use a regra da multiplicação de potências para distribuir o expoente.
Toque para ver mais passagens...
Etapa 1.4.2.2.1.5.1
Aplique a regra do produto a .
Etapa 1.4.2.2.1.5.2
Aplique a regra do produto a .
Etapa 1.4.2.2.1.6
Eleve à potência de .
Etapa 1.4.2.2.1.7
Multiplique por .
Etapa 1.4.2.2.1.8
Eleve à potência de .
Etapa 1.4.2.2.1.9
Eleve à potência de .
Etapa 1.4.2.2.1.10
Multiplique .
Toque para ver mais passagens...
Etapa 1.4.2.2.1.10.1
Multiplique por .
Etapa 1.4.2.2.1.10.2
Combine e .
Etapa 1.4.2.2.1.10.3
Multiplique por .
Etapa 1.4.2.2.2
Encontre o denominador comum.
Toque para ver mais passagens...
Etapa 1.4.2.2.2.1
Multiplique por .
Etapa 1.4.2.2.2.2
Multiplique por .
Etapa 1.4.2.2.2.3
Multiplique por .
Etapa 1.4.2.2.2.4
Multiplique por .
Etapa 1.4.2.2.2.5
Escreva como uma fração com denominador .
Etapa 1.4.2.2.2.6
Multiplique por .
Etapa 1.4.2.2.2.7
Multiplique por .
Etapa 1.4.2.2.2.8
Reordene os fatores de .
Etapa 1.4.2.2.2.9
Multiplique por .
Etapa 1.4.2.2.2.10
Multiplique por .
Etapa 1.4.2.2.3
Combine os numeradores em relação ao denominador comum.
Etapa 1.4.2.2.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.2.2.4.1
Multiplique por .
Etapa 1.4.2.2.4.2
Multiplique por .
Etapa 1.4.2.2.4.3
Multiplique por .
Etapa 1.4.2.2.5
Simplifique somando os números.
Toque para ver mais passagens...
Etapa 1.4.2.2.5.1
Some e .
Etapa 1.4.2.2.5.2
Some e .
Etapa 1.4.2.2.5.3
Some e .
Etapa 1.4.3
Liste todos os pontos.
Etapa 2
Exclua os pontos que não estão no intervalo.
Etapa 3
Use o teste da primeira derivada para determinar quais pontos podem ser máximos ou mínimos.
Toque para ver mais passagens...
Etapa 3.1
Divida em intervalos separados em torno dos valores de que tornam a primeira derivada ou indefinida.
Etapa 3.2
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 3.2.1
Substitua a variável por na expressão.
Etapa 3.2.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.2.1.1
Eleve à potência de .
Etapa 3.2.2.1.2
Multiplique por .
Etapa 3.2.2.1.3
Multiplique por .
Etapa 3.2.2.2
Simplifique subtraindo os números.
Toque para ver mais passagens...
Etapa 3.2.2.2.1
Subtraia de .
Etapa 3.2.2.2.2
Subtraia de .
Etapa 3.2.2.3
A resposta final é .
Etapa 3.3
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 3.3.1
Substitua a variável por na expressão.
Etapa 3.3.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.3.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 3.3.2.1.2
Multiplique por .
Etapa 3.3.2.1.3
Multiplique por .
Etapa 3.3.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 3.3.2.2.1
Some e .
Etapa 3.3.2.2.2
Subtraia de .
Etapa 3.3.2.3
A resposta final é .
Etapa 3.4
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 3.4.1
Substitua a variável por na expressão.
Etapa 3.4.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.4.2.1.1
Eleve à potência de .
Etapa 3.4.2.1.2
Multiplique por .
Etapa 3.4.2.1.3
Multiplique por .
Etapa 3.4.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 3.4.2.2.1
Some e .
Etapa 3.4.2.2.2
Subtraia de .
Etapa 3.4.2.3
A resposta final é .
Etapa 3.5
Como a primeira derivada mudou os sinais de positivo para negativo em torno de , então é um máximo local.
é um máximo local
Etapa 3.6
Como a primeira derivada mudou os sinais de negativo para positivo em torno de , então é um mínimo local.
é um mínimo local
Etapa 3.7
Esses são os extremos locais para .
é um máximo local
é um mínimo local
é um máximo local
é um mínimo local
Etapa 4
Compare os valores de encontrados para cada valor de para determinar o máximo e mínimo absolutos no intervalo determinado. O máximo ocorrerá no valor mais alto de , e o mínimo ocorrerá no valor mais baixo de .
Nenhum máximo absoluto
Mínimo absoluto:
Etapa 5