Cálculo Exemplos

Ermittle die Tangente bei (1,-5) f(x)=(x-2)(x^2+4) , (1,-5)
,
Etapa 1
Encontre a primeira derivada e avalie em e para encontrar a inclinação da reta tangente.
Toque para ver mais passagens...
Etapa 1.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.2.4.1
Some e .
Etapa 1.2.4.2
Mova para a esquerda de .
Etapa 1.2.5
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.8
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.2.8.1
Some e .
Etapa 1.2.8.2
Multiplique por .
Etapa 1.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.1
Aplique a propriedade distributiva.
Etapa 1.3.2
Aplique a propriedade distributiva.
Etapa 1.3.3
Combine os termos.
Toque para ver mais passagens...
Etapa 1.3.3.1
Eleve à potência de .
Etapa 1.3.3.2
Eleve à potência de .
Etapa 1.3.3.3
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.3.3.4
Some e .
Etapa 1.3.3.5
Multiplique por .
Etapa 1.3.3.6
Some e .
Etapa 1.4
Avalie a derivada em .
Etapa 1.5
Simplifique.
Toque para ver mais passagens...
Etapa 1.5.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.5.1.1
Um elevado a qualquer potência é um.
Etapa 1.5.1.2
Multiplique por .
Etapa 1.5.1.3
Multiplique por .
Etapa 1.5.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 1.5.2.1
Subtraia de .
Etapa 1.5.2.2
Some e .
Etapa 2
Substitua os valores de inclinação e ponto na fórmula do ponto-declividade e resolva .
Toque para ver mais passagens...
Etapa 2.1
Use a inclinação e um ponto determinado para substituir e na forma do ponto-declividade , que é derivada da equação de inclinação .
Etapa 2.2
Simplifique a equação e mantenha-a na forma do ponto-declividade.
Etapa 2.3
Resolva .
Toque para ver mais passagens...
Etapa 2.3.1
Simplifique .
Toque para ver mais passagens...
Etapa 2.3.1.1
Reescreva.
Etapa 2.3.1.2
Simplifique somando os zeros.
Etapa 2.3.1.3
Aplique a propriedade distributiva.
Etapa 2.3.1.4
Multiplique por .
Etapa 2.3.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 2.3.2.1
Subtraia dos dois lados da equação.
Etapa 2.3.2.2
Subtraia de .
Etapa 3