Cálculo Exemplos

Ermittle die Tangente bei (3,0) y=x^3-9x at the point (3,0)
at the point
Etapa 1
Encontre a primeira derivada e avalie em e para encontrar a inclinação da reta tangente.
Toque para ver mais passagens...
Etapa 1.1
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Avalie a derivada em .
Etapa 1.4
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.4.1.1.1
Multiplique por .
Toque para ver mais passagens...
Etapa 1.4.1.1.1.1
Eleve à potência de .
Etapa 1.4.1.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.4.1.1.2
Some e .
Etapa 1.4.1.2
Eleve à potência de .
Etapa 1.4.2
Subtraia de .
Etapa 2
Substitua os valores de inclinação e ponto na fórmula do ponto-declividade e resolva .
Toque para ver mais passagens...
Etapa 2.1
Use a inclinação e um ponto determinado para substituir e na forma do ponto-declividade , que é derivada da equação de inclinação .
Etapa 2.2
Simplifique a equação e mantenha-a na forma do ponto-declividade.
Etapa 2.3
Resolva .
Toque para ver mais passagens...
Etapa 2.3.1
Some e .
Etapa 2.3.2
Simplifique .
Toque para ver mais passagens...
Etapa 2.3.2.1
Aplique a propriedade distributiva.
Etapa 2.3.2.2
Multiplique por .
Etapa 3