Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Deixe . Encontre .
Etapa 1.1.1
Diferencie .
Etapa 1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.5
Some e .
Etapa 1.2
Reescreva o problema usando e .
Etapa 2
Como é constante com relação a , mova para fora da integral.
Etapa 3
Etapa 3.1
Mova para fora do denominador, elevando-o à potência.
Etapa 3.2
Multiplique os expoentes em .
Etapa 3.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.2.2
Multiplique .
Etapa 3.2.2.1
Combine e .
Etapa 3.2.2.2
Multiplique por .
Etapa 3.2.3
Mova o número negativo para a frente da fração.
Etapa 4
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 5
Etapa 5.1
Reescreva como .
Etapa 5.2
Reescreva como .
Etapa 5.3
Simplifique.
Etapa 5.3.1
Mova o número negativo para a frente da fração.
Etapa 5.3.2
Multiplique por .
Etapa 5.3.3
Multiplique por .
Etapa 5.3.4
Fatore de .
Etapa 5.3.5
Cancele os fatores comuns.
Etapa 5.3.5.1
Fatore de .
Etapa 5.3.5.2
Cancele o fator comum.
Etapa 5.3.5.3
Reescreva a expressão.
Etapa 6
Substitua todas as ocorrências de por .