Cálculo Exemplos

Integre Usando a Substituição u integral de (x^2)/( raiz quadrada de 1-x^2) com relação a x
Etapa 1
Deixe , em que . Depois, . Como , é positivo.
Etapa 2
Simplifique os termos.
Toque para ver mais passagens...
Etapa 2.1
Simplifique .
Toque para ver mais passagens...
Etapa 2.1.1
Aplique a identidade trigonométrica fundamental.
Etapa 2.1.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.1
Cancele o fator comum.
Etapa 2.2.2
Reescreva a expressão.
Etapa 3
Use a fórmula do arco metade para reescrever como .
Etapa 4
Como é constante com relação a , mova para fora da integral.
Etapa 5
Divida a integral única em várias integrais.
Etapa 6
Aplique a regra da constante.
Etapa 7
Como é constante com relação a , mova para fora da integral.
Etapa 8
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 8.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 8.1.1
Diferencie .
Etapa 8.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.1.4
Multiplique por .
Etapa 8.2
Reescreva o problema usando e .
Etapa 9
Combine e .
Etapa 10
Como é constante com relação a , mova para fora da integral.
Etapa 11
A integral de com relação a é .
Etapa 12
Simplifique.
Etapa 13
Substitua novamente para cada variável de substituição de integração.
Toque para ver mais passagens...
Etapa 13.1
Substitua todas as ocorrências de por .
Etapa 13.2
Substitua todas as ocorrências de por .
Etapa 13.3
Substitua todas as ocorrências de por .
Etapa 14
Simplifique.
Toque para ver mais passagens...
Etapa 14.1
Combine e .
Etapa 14.2
Aplique a propriedade distributiva.
Etapa 14.3
Combine e .
Etapa 14.4
Multiplique .
Toque para ver mais passagens...
Etapa 14.4.1
Multiplique por .
Etapa 14.4.2
Multiplique por .
Etapa 15
Reordene os termos.