Cálculo Exemplos

Integre Usando a Substituição u integral de x raiz quadrada de 2-x com relação a x
Etapa 1
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 1.1.1
Diferencie .
Etapa 1.1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Multiplique por .
Etapa 1.1.4
Subtraia de .
Etapa 1.2
Reescreva o problema usando e .
Etapa 2
Como é constante com relação a , mova para fora da integral.
Etapa 3
Use para reescrever como .
Etapa 4
Expanda .
Toque para ver mais passagens...
Etapa 4.1
Aplique a propriedade distributiva.
Etapa 4.2
Fatore o negativo.
Etapa 4.3
Eleve à potência de .
Etapa 4.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.5
Escreva como uma fração com um denominador comum.
Etapa 4.6
Combine os numeradores em relação ao denominador comum.
Etapa 4.7
Some e .
Etapa 4.8
Reordene e .
Etapa 5
Divida a integral única em várias integrais.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 8
Como é constante com relação a , mova para fora da integral.
Etapa 9
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 10
Simplifique.
Etapa 11
Reordene os termos.
Etapa 12
Substitua todas as ocorrências de por .
Etapa 13
Simplifique.
Toque para ver mais passagens...
Etapa 13.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 13.1.1
Combine e .
Etapa 13.1.2
Combine e .
Etapa 13.1.3
Mova para a esquerda de .
Etapa 13.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 13.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 13.4
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 13.4.1
Multiplique por .
Etapa 13.4.2
Multiplique por .
Etapa 13.4.3
Multiplique por .
Etapa 13.4.4
Multiplique por .
Etapa 13.5
Combine os numeradores em relação ao denominador comum.
Etapa 13.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 13.6.1
Multiplique por .
Etapa 13.6.2
Multiplique por .
Etapa 14
Reordene os termos.