Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Deixe . Encontre .
Etapa 1.1.1
Diferencie .
Etapa 1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.3
Avalie .
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Multiplique por .
Etapa 1.1.4
Diferencie usando a regra da constante.
Etapa 1.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.4.2
Some e .
Etapa 1.2
Reescreva o problema usando e .
Etapa 2
Etapa 2.1
Combine e .
Etapa 2.2
Use para reescrever como .
Etapa 3
Etapa 3.1
Aplique a propriedade distributiva.
Etapa 3.2
Multiplique por .
Etapa 3.3
Eleve à potência de .
Etapa 3.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.5
Escreva como uma fração com um denominador comum.
Etapa 3.6
Combine os numeradores em relação ao denominador comum.
Etapa 3.7
Some e .
Etapa 3.8
Multiplique por .
Etapa 3.9
Multiplique por .
Etapa 3.10
Multiplique por .
Etapa 4
Divida a integral única em várias integrais.
Etapa 5
Como é constante com relação a , mova para fora da integral.
Etapa 6
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 7
Como é constante com relação a , mova para fora da integral.
Etapa 8
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 9
Etapa 9.1
Simplifique.
Etapa 9.2
Reescreva como .
Etapa 9.3
Simplifique.
Etapa 9.3.1
Multiplique por .
Etapa 9.3.2
Multiplique por .
Etapa 9.3.3
Cancele o fator comum de e .
Etapa 9.3.3.1
Fatore de .
Etapa 9.3.3.2
Cancele os fatores comuns.
Etapa 9.3.3.2.1
Fatore de .
Etapa 9.3.3.2.2
Cancele o fator comum.
Etapa 9.3.3.2.3
Reescreva a expressão.
Etapa 10
Substitua todas as ocorrências de por .