Insira um problema...
Cálculo Exemplos
Let
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Avalie .
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Multiplique por .
Etapa 1.1.3
Avalie .
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Multiplique por .
Etapa 1.1.4
Avalie .
Etapa 1.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.4.3
Multiplique por .
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Fatore o lado esquerdo da equação.
Etapa 2.2.1
Fatore de .
Etapa 2.2.1.1
Fatore de .
Etapa 2.2.1.2
Fatore de .
Etapa 2.2.1.3
Fatore de .
Etapa 2.2.1.4
Fatore de .
Etapa 2.2.1.5
Fatore de .
Etapa 2.2.2
Fatore.
Etapa 2.2.2.1
Fatore usando o método AC.
Etapa 2.2.2.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 2.2.2.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 2.2.2.2
Remova os parênteses desnecessários.
Etapa 2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.4
Defina como igual a e resolva para .
Etapa 2.4.1
Defina como igual a .
Etapa 2.4.2
Some aos dois lados da equação.
Etapa 2.5
Defina como igual a e resolva para .
Etapa 2.5.1
Defina como igual a .
Etapa 2.5.2
Some aos dois lados da equação.
Etapa 2.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 3
Etapa 3.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 4
Etapa 4.1
Avalie em .
Etapa 4.1.1
Substitua por .
Etapa 4.1.2
Simplifique.
Etapa 4.1.2.1
Simplifique cada termo.
Etapa 4.1.2.1.1
Multiplique por somando os expoentes.
Etapa 4.1.2.1.1.1
Multiplique por .
Etapa 4.1.2.1.1.1.1
Eleve à potência de .
Etapa 4.1.2.1.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.1.2.1.1.2
Some e .
Etapa 4.1.2.1.2
Eleve à potência de .
Etapa 4.1.2.1.3
Eleve à potência de .
Etapa 4.1.2.1.4
Multiplique por .
Etapa 4.1.2.1.5
Multiplique por .
Etapa 4.1.2.2
Simplifique somando e subtraindo.
Etapa 4.1.2.2.1
Subtraia de .
Etapa 4.1.2.2.2
Some e .
Etapa 4.2
Avalie em .
Etapa 4.2.1
Substitua por .
Etapa 4.2.2
Simplifique.
Etapa 4.2.2.1
Simplifique cada termo.
Etapa 4.2.2.1.1
Um elevado a qualquer potência é um.
Etapa 4.2.2.1.2
Multiplique por .
Etapa 4.2.2.1.3
Um elevado a qualquer potência é um.
Etapa 4.2.2.1.4
Multiplique por .
Etapa 4.2.2.1.5
Multiplique por .
Etapa 4.2.2.2
Simplifique somando e subtraindo.
Etapa 4.2.2.2.1
Subtraia de .
Etapa 4.2.2.2.2
Some e .
Etapa 4.3
Liste todos os pontos.
Etapa 5