Cálculo Exemplos

Ermittle die Second-Ableitung f(x)=cos(x^2)
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2
A derivada de em relação a é .
Etapa 1.1.3
Substitua todas as ocorrências de por .
Etapa 1.2
Diferencie usando a regra da multiplicação de potências.
Toque para ver mais passagens...
Etapa 1.2.1
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.2.2.1
Multiplique por .
Etapa 1.2.2.2
Reordene os fatores de .
Etapa 2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.3.2
A derivada de em relação a é .
Etapa 2.3.3
Substitua todas as ocorrências de por .
Etapa 2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.5
Eleve à potência de .
Etapa 2.6
Eleve à potência de .
Etapa 2.7
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.8
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.8.1
Some e .
Etapa 2.8.2
Mova para a esquerda de .
Etapa 2.9
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.10
Multiplique por .
Etapa 2.11
Simplifique.
Toque para ver mais passagens...
Etapa 2.11.1
Aplique a propriedade distributiva.
Etapa 2.11.2
Multiplique por .
Etapa 3
A segunda derivada de com relação a é .