Cálculo Exemplos

Encontre a Antiderivada f(x)=6/(5 raiz quadrada de 4x+2)+1/(cos(5x)^2)
Etapa 1
É possível determinar a função encontrando a integral indefinida da derivada .
Etapa 2
Estabeleça a integral para resolver.
Etapa 3
Converta de em .
Etapa 4
Divida a integral única em várias integrais.
Etapa 5
Como é constante com relação a , mova para fora da integral.
Etapa 6
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 6.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 6.1.1
Diferencie .
Etapa 6.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 6.1.3
Avalie .
Toque para ver mais passagens...
Etapa 6.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 6.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 6.1.3.3
Multiplique por .
Etapa 6.1.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 6.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 6.1.4.2
Some e .
Etapa 6.2
Reescreva o problema usando e .
Etapa 7
Simplifique.
Toque para ver mais passagens...
Etapa 7.1
Multiplique por .
Etapa 7.2
Mova para a esquerda de .
Etapa 8
Como é constante com relação a , mova para fora da integral.
Etapa 9
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 9.1
Simplifique.
Toque para ver mais passagens...
Etapa 9.1.1
Multiplique por .
Etapa 9.1.2
Multiplique por .
Etapa 9.1.3
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 9.1.3.1
Fatore de .
Etapa 9.1.3.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 9.1.3.2.1
Fatore de .
Etapa 9.1.3.2.2
Cancele o fator comum.
Etapa 9.1.3.2.3
Reescreva a expressão.
Etapa 9.2
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 9.2.1
Use para reescrever como .
Etapa 9.2.2
Mova para fora do denominador, elevando-o à potência.
Etapa 9.2.3
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 9.2.3.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 9.2.3.2
Combine e .
Etapa 9.2.3.3
Mova o número negativo para a frente da fração.
Etapa 10
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 11
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 11.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 11.1.1
Diferencie .
Etapa 11.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 11.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 11.1.4
Multiplique por .
Etapa 11.2
Reescreva o problema usando e .
Etapa 12
Combine e .
Etapa 13
Como é constante com relação a , mova para fora da integral.
Etapa 14
Como a derivada de é , a integral de é .
Etapa 15
Simplifique.
Etapa 16
Substitua novamente para cada variável de substituição de integração.
Toque para ver mais passagens...
Etapa 16.1
Substitua todas as ocorrências de por .
Etapa 16.2
Substitua todas as ocorrências de por .
Etapa 17
Reordene os termos.
Etapa 18
A resposta é a primitiva da função .