Cálculo Exemplos

Avalie o Limite limite à medida que x aproxima b de ((x-b)^10-4x+4b)/(x-b)
Etapa 1
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Toque para ver mais passagens...
Etapa 1.1.2.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.2
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.5
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.2.6
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.7
Avalie os limites substituindo por todas as ocorrências de .
Toque para ver mais passagens...
Etapa 1.1.2.7.1
Avalie o limite de substituindo por .
Etapa 1.1.2.7.2
Avalie o limite de substituindo por .
Etapa 1.1.2.8
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.1.2.8.1
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 1.1.2.8.1.1
Subtraia de .
Etapa 1.1.2.8.1.2
Some e .
Etapa 1.1.2.8.1.3
Some e .
Etapa 1.1.2.8.2
Elevar a qualquer potência positiva produz .
Etapa 1.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.3.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.2
Avalie o limite de substituindo por .
Etapa 1.1.3.3
Subtraia de .
Etapa 1.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.3.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.3.3.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.3.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.1.3
Substitua todas as ocorrências de por .
Etapa 1.3.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3.5
Some e .
Etapa 1.3.3.6
Multiplique por .
Etapa 1.3.4
Avalie .
Toque para ver mais passagens...
Etapa 1.3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.4.3
Multiplique por .
Etapa 1.3.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.6
Some e .
Etapa 1.3.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.10
Some e .
Etapa 1.4
Divida por .
Etapa 2
Avalie o limite.
Toque para ver mais passagens...
Etapa 2.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.3
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.4
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.6
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3
Avalie o limite de substituindo por .
Etapa 4
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 4.1
Subtraia de .
Etapa 4.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.2.1
Elevar a qualquer potência positiva produz .
Etapa 4.2.2
Multiplique por .
Etapa 4.2.3
Multiplique por .
Etapa 4.3
Subtraia de .