Cálculo Exemplos

Encontra os Extremos f(x) = cube root of x-1
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Use para reescrever como .
Etapa 1.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Substitua todas as ocorrências de por .
Etapa 1.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.4
Combine e .
Etapa 1.5
Combine os numeradores em relação ao denominador comum.
Etapa 1.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.6.1
Multiplique por .
Etapa 1.6.2
Subtraia de .
Etapa 1.7
Combine frações.
Toque para ver mais passagens...
Etapa 1.7.1
Mova o número negativo para a frente da fração.
Etapa 1.7.2
Combine e .
Etapa 1.7.3
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.8
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.9
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.11
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.11.1
Some e .
Etapa 1.11.2
Multiplique por .
Etapa 2
Defina a primeira derivada como igual a e resolva .
Toque para ver mais passagens...
Etapa 2.1
Defina o numerador como igual a zero.
Etapa 2.2
Como , não há soluções.
Nenhuma solução
Nenhuma solução
Etapa 3
Como não existe um valor que torne a primeira derivada , não há pontos de inflexão.
Sem pontos de inflexão
Etapa 4