Insira um problema...
Cálculo Exemplos
Etapa 1
Escreva como uma função.
Etapa 2
É possível determinar a função encontrando a integral indefinida da derivada .
Etapa 3
Estabeleça a integral para resolver.
Etapa 4
Etapa 4.1
Decomponha a fração e multiplique pelo denominador comum.
Etapa 4.1.1
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 4.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 4.1.3
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 4.1.4
Cancele o fator comum de .
Etapa 4.1.4.1
Cancele o fator comum.
Etapa 4.1.4.2
Divida por .
Etapa 4.1.5
Simplifique cada termo.
Etapa 4.1.5.1
Cancele o fator comum de .
Etapa 4.1.5.1.1
Cancele o fator comum.
Etapa 4.1.5.1.2
Divida por .
Etapa 4.1.5.2
Cancele o fator comum de e .
Etapa 4.1.5.2.1
Fatore de .
Etapa 4.1.5.2.2
Cancele os fatores comuns.
Etapa 4.1.5.2.2.1
Multiplique por .
Etapa 4.1.5.2.2.2
Cancele o fator comum.
Etapa 4.1.5.2.2.3
Reescreva a expressão.
Etapa 4.1.5.2.2.4
Divida por .
Etapa 4.1.5.3
Aplique a propriedade distributiva.
Etapa 4.1.5.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 4.1.5.5
Mova para a esquerda de .
Etapa 4.1.5.6
Reescreva como .
Etapa 4.1.6
Simplifique a expressão.
Etapa 4.1.6.1
Mova .
Etapa 4.1.6.2
Reordene e .
Etapa 4.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Etapa 4.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 4.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 4.2.3
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 4.3
Resolva o sistema de equações.
Etapa 4.3.1
Resolva em .
Etapa 4.3.1.1
Reescreva a equação como .
Etapa 4.3.1.2
Divida cada termo em por e simplifique.
Etapa 4.3.1.2.1
Divida cada termo em por .
Etapa 4.3.1.2.2
Simplifique o lado esquerdo.
Etapa 4.3.1.2.2.1
Cancele o fator comum de .
Etapa 4.3.1.2.2.1.1
Cancele o fator comum.
Etapa 4.3.1.2.2.1.2
Divida por .
Etapa 4.3.1.2.3
Simplifique o lado direito.
Etapa 4.3.1.2.3.1
Divida por .
Etapa 4.3.2
Substitua todas as ocorrências de por em cada equação.
Etapa 4.3.2.1
Substitua todas as ocorrências de em por .
Etapa 4.3.2.2
Simplifique o lado direito.
Etapa 4.3.2.2.1
Multiplique por .
Etapa 4.3.3
Resolva em .
Etapa 4.3.3.1
Reescreva a equação como .
Etapa 4.3.3.2
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 4.3.3.2.1
Some aos dois lados da equação.
Etapa 4.3.3.2.2
Some e .
Etapa 4.3.4
Resolva o sistema de equações.
Etapa 4.3.5
Liste todas as soluções.
Etapa 4.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para e .
Etapa 4.5
Remova o zero da expressão.
Etapa 5
Divida a integral única em várias integrais.
Etapa 6
Etapa 6.1
Deixe . Encontre .
Etapa 6.1.1
Diferencie .
Etapa 6.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 6.1.3
Avalie .
Etapa 6.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 6.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 6.1.3.3
Multiplique por .
Etapa 6.1.4
Diferencie usando a regra da constante.
Etapa 6.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 6.1.4.2
Some e .
Etapa 6.2
Reescreva o problema usando e .
Etapa 7
Etapa 7.1
Multiplique por .
Etapa 7.2
Mova para a esquerda de .
Etapa 8
Como é constante com relação a , mova para fora da integral.
Etapa 9
Etapa 9.1
Mova para fora do denominador, elevando-o à potência.
Etapa 9.2
Multiplique os expoentes em .
Etapa 9.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 9.2.2
Multiplique por .
Etapa 10
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 11
Como é constante com relação a , mova para fora da integral.
Etapa 12
Etapa 12.1
Deixe . Encontre .
Etapa 12.1.1
Diferencie .
Etapa 12.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 12.1.3
Avalie .
Etapa 12.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 12.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 12.1.3.3
Multiplique por .
Etapa 12.1.4
Diferencie usando a regra da constante.
Etapa 12.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 12.1.4.2
Some e .
Etapa 12.2
Reescreva o problema usando e .
Etapa 13
Etapa 13.1
Multiplique por .
Etapa 13.2
Mova para a esquerda de .
Etapa 14
Como é constante com relação a , mova para fora da integral.
Etapa 15
Etapa 15.1
Combine e .
Etapa 15.2
Cancele o fator comum de .
Etapa 15.2.1
Cancele o fator comum.
Etapa 15.2.2
Reescreva a expressão.
Etapa 15.3
Multiplique por .
Etapa 16
A integral de com relação a é .
Etapa 17
Etapa 17.1
Simplifique.
Etapa 17.2
Multiplique por .
Etapa 18
Etapa 18.1
Substitua todas as ocorrências de por .
Etapa 18.2
Substitua todas as ocorrências de por .
Etapa 19
A resposta é a primitiva da função .