Insira um problema...
Cálculo Exemplos
Etapa 1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2
Etapa 2.1
Avalie o limite do numerador e o limite do denominador.
Etapa 2.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 2.1.2
Avalie o limite do numerador.
Etapa 2.1.2.1
Avalie o limite.
Etapa 2.1.2.1.1
Mova o limite dentro da função trigonométrica, pois o seno é contínuo.
Etapa 2.1.2.1.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.1.2.2
Avalie o limite de substituindo por .
Etapa 2.1.2.3
Simplifique a resposta.
Etapa 2.1.2.3.1
Multiplique por .
Etapa 2.1.2.3.2
O valor exato de é .
Etapa 2.1.3
Avalie o limite do denominador.
Etapa 2.1.3.1
Avalie o limite.
Etapa 2.1.3.1.1
Mova o limite dentro da função trigonométrica, pois o seno é contínuo.
Etapa 2.1.3.1.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.1.3.2
Avalie o limite de substituindo por .
Etapa 2.1.3.3
Simplifique a resposta.
Etapa 2.1.3.3.1
Multiplique por .
Etapa 2.1.3.3.2
O valor exato de é .
Etapa 2.1.3.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 2.3
Encontre a derivada do numerador e do denominador.
Etapa 2.3.1
Diferencie o numerador e o denominador.
Etapa 2.3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.3.2.2
A derivada de em relação a é .
Etapa 2.3.2.3
Substitua todas as ocorrências de por .
Etapa 2.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.5
Multiplique por .
Etapa 2.3.6
Mova para a esquerda de .
Etapa 2.3.7
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.3.7.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.3.7.2
A derivada de em relação a é .
Etapa 2.3.7.3
Substitua todas as ocorrências de por .
Etapa 2.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.9
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.10
Multiplique por .
Etapa 2.3.11
Mova para a esquerda de .
Etapa 3
Etapa 3.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.2
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 3.3
Mova o limite dentro da função trigonométrica, pois o cosseno é contínuo.
Etapa 3.4
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.5
Mova o limite dentro da função trigonométrica, pois o cosseno é contínuo.
Etapa 3.6
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 4
Etapa 4.1
Avalie o limite de substituindo por .
Etapa 4.2
Avalie o limite de substituindo por .
Etapa 5
Etapa 5.1
Multiplique .
Etapa 5.1.1
Multiplique por .
Etapa 5.1.2
Multiplique por .
Etapa 5.1.3
Multiplique por .
Etapa 5.2
Simplifique o numerador.
Etapa 5.2.1
Multiplique por .
Etapa 5.2.2
O valor exato de é .
Etapa 5.3
Simplifique o denominador.
Etapa 5.3.1
Multiplique por .
Etapa 5.3.2
O valor exato de é .
Etapa 5.4
Cancele o fator comum de .
Etapa 5.4.1
Cancele o fator comum.
Etapa 5.4.2
Reescreva a expressão.
Etapa 5.5
Multiplique por .
Etapa 6
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: