Cálculo Exemplos

Avalie o Limite limite à medida que v se aproxima de -3 de ( raiz quadrada de 4-v- raiz quadrada de 7)/(v+3)
Etapa 1
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Toque para ver mais passagens...
Etapa 1.1.2.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.2
Mova o limite para baixo do sinal do radical.
Etapa 1.1.2.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.6
Simplifique os termos.
Toque para ver mais passagens...
Etapa 1.1.2.6.1
Avalie o limite de substituindo por .
Etapa 1.1.2.6.2
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.1.2.6.2.1
Some e .
Etapa 1.1.2.6.2.2
Subtraia de .
Etapa 1.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.3.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.2
Avalie o limite de substituindo por .
Etapa 1.1.3.3
Some e .
Etapa 1.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.3.1
Use para reescrever como .
Etapa 1.3.3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.3.3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.2.3
Substitua todas as ocorrências de por .
Etapa 1.3.3.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.7
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.3.8
Combine e .
Etapa 1.3.3.9
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.3.10
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.3.3.10.1
Multiplique por .
Etapa 1.3.3.10.2
Subtraia de .
Etapa 1.3.3.11
Mova o número negativo para a frente da fração.
Etapa 1.3.3.12
Multiplique por .
Etapa 1.3.3.13
Subtraia de .
Etapa 1.3.3.14
Combine e .
Etapa 1.3.3.15
Combine e .
Etapa 1.3.3.16
Mova para a esquerda de .
Etapa 1.3.3.17
Reescreva como .
Etapa 1.3.3.18
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.3.3.19
Mova o número negativo para a frente da fração.
Etapa 1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.5
Some e .
Etapa 1.3.6
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.9
Some e .
Etapa 1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 1.5
Reescreva como .
Etapa 1.6
Multiplique por .
Etapa 2
Avalie o limite.
Toque para ver mais passagens...
Etapa 2.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.3
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 2.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.5
Mova o limite para baixo do sinal do radical.
Etapa 2.6
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.7
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.8
Simplifique os termos.
Toque para ver mais passagens...
Etapa 2.8.1
Avalie o limite de substituindo por .
Etapa 2.8.2
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 2.8.2.1
Some e .
Etapa 2.8.2.2
Multiplique por .
Etapa 2.8.2.3
Combine e simplifique o denominador.
Toque para ver mais passagens...
Etapa 2.8.2.3.1
Multiplique por .
Etapa 2.8.2.3.2
Eleve à potência de .
Etapa 2.8.2.3.3
Eleve à potência de .
Etapa 2.8.2.3.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.8.2.3.5
Some e .
Etapa 2.8.2.3.6
Reescreva como .
Toque para ver mais passagens...
Etapa 2.8.2.3.6.1
Use para reescrever como .
Etapa 2.8.2.3.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.8.2.3.6.3
Combine e .
Etapa 2.8.2.3.6.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.8.2.3.6.4.1
Cancele o fator comum.
Etapa 2.8.2.3.6.4.2
Reescreva a expressão.
Etapa 2.8.2.3.6.5
Avalie o expoente.
Etapa 2.8.2.4
Multiplique .
Toque para ver mais passagens...
Etapa 2.8.2.4.1
Multiplique por .
Etapa 2.8.2.4.2
Multiplique por .
Etapa 3
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: