Cálculo Exemplos

Avalia utilizando o Teorema de Bolzano-Cauchy limite à medida que x aproxima 1 de (5-5x^2)/(4tan(3x-3))
Etapa 1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.2
Avalie o limite do numerador.
Toque para ver mais passagens...
Etapa 1.2.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.2.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.2.1.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.2.1.4
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.2.2
Avalie o limite de substituindo por .
Etapa 1.2.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.2.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.2.3.1.1
Um elevado a qualquer potência é um.
Etapa 1.2.3.1.2
Multiplique por .
Etapa 1.2.3.2
Subtraia de .
Etapa 1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 1.3.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.3.1.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.3.1.2
Mova o limite dentro da função trigonométrica, pois a tangente é contínua.
Etapa 1.3.1.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.3.1.4
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.3.1.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.3.2
Avalie o limite de substituindo por .
Etapa 1.3.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.3.1.1
Multiplique por .
Etapa 1.3.3.1.2
Multiplique por .
Etapa 1.3.3.2
Subtraia de .
Etapa 1.3.3.3
O valor exato de é .
Etapa 1.3.3.4
Multiplique por .
Etapa 1.3.3.5
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 3.1
Diferencie o numerador e o denominador.
Etapa 3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4
Avalie .
Toque para ver mais passagens...
Etapa 3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4.3
Multiplique por .
Etapa 3.5
Subtraia de .
Etapa 3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.7
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 3.7.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.7.2
A derivada de em relação a é .
Etapa 3.7.3
Substitua todas as ocorrências de por .
Etapa 3.8
Remova os parênteses.
Etapa 3.9
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.11
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.12
Multiplique por .
Etapa 3.13
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.14
Some e .
Etapa 3.15
Multiplique por .
Etapa 4
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 4.1
Fatore de .
Etapa 4.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 4.2.1
Fatore de .
Etapa 4.2.2
Cancele o fator comum.
Etapa 4.2.3
Reescreva a expressão.
Etapa 5
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 6
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 7
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 8
Mova o limite dentro da função trigonométrica, pois a secante é contínua.
Etapa 9
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 10
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 11
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 12
Avalie os limites substituindo por todas as ocorrências de .
Toque para ver mais passagens...
Etapa 12.1
Avalie o limite de substituindo por .
Etapa 12.2
Avalie o limite de substituindo por .
Etapa 13
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 13.1
Combine.
Etapa 13.2
Multiplique por .
Etapa 13.3
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 13.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 13.3.1.1
Multiplique por .
Etapa 13.3.1.2
Multiplique por .
Etapa 13.3.2
Subtraia de .
Etapa 13.3.3
O valor exato de é .
Etapa 13.3.4
Um elevado a qualquer potência é um.
Etapa 13.4
Multiplique por .
Etapa 13.5
Mova o número negativo para a frente da fração.