Cálculo Exemplos

Determina o valor máximo/mínimo f(x) = square root of 5x+18
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
Use para reescrever como .
Etapa 1.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Substitua todas as ocorrências de por .
Etapa 1.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.4
Combine e .
Etapa 1.5
Combine os numeradores em relação ao denominador comum.
Etapa 1.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.6.1
Multiplique por .
Etapa 1.6.2
Subtraia de .
Etapa 1.7
Combine frações.
Toque para ver mais passagens...
Etapa 1.7.1
Mova o número negativo para a frente da fração.
Etapa 1.7.2
Combine e .
Etapa 1.7.3
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.8
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.10
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.11
Multiplique por .
Etapa 1.12
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.13
Combine frações.
Toque para ver mais passagens...
Etapa 1.13.1
Some e .
Etapa 1.13.2
Combine e .
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
Diferencie usando a regra do múltiplo constante.
Toque para ver mais passagens...
Etapa 2.1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 2.1.2.1
Reescreva como .
Etapa 2.1.2.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.1.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.1.2.2.2
Combine e .
Etapa 2.1.2.2.3
Mova o número negativo para a frente da fração.
Etapa 2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.4
Combine e .
Etapa 2.5
Combine os numeradores em relação ao denominador comum.
Etapa 2.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.6.1
Multiplique por .
Etapa 2.6.2
Subtraia de .
Etapa 2.7
Combine frações.
Toque para ver mais passagens...
Etapa 2.7.1
Mova o número negativo para a frente da fração.
Etapa 2.7.2
Combine e .
Etapa 2.7.3
Mova para o denominador usando a regra do expoente negativo .
Etapa 2.7.4
Multiplique por .
Etapa 2.7.5
Multiplique por .
Etapa 2.8
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.10
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.11
Multiplique por .
Etapa 2.12
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.13
Combine frações.
Toque para ver mais passagens...
Etapa 2.13.1
Some e .
Etapa 2.13.2
Multiplique por .
Etapa 2.13.3
Combine e .
Etapa 2.13.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.13.4.1
Multiplique por .
Etapa 2.13.4.2
Mova o número negativo para a frente da fração.
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1.1
Use para reescrever como .
Etapa 4.1.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 4.1.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 4.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2.3
Substitua todas as ocorrências de por .
Etapa 4.1.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 4.1.4
Combine e .
Etapa 4.1.5
Combine os numeradores em relação ao denominador comum.
Etapa 4.1.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 4.1.6.1
Multiplique por .
Etapa 4.1.6.2
Subtraia de .
Etapa 4.1.7
Combine frações.
Toque para ver mais passagens...
Etapa 4.1.7.1
Mova o número negativo para a frente da fração.
Etapa 4.1.7.2
Combine e .
Etapa 4.1.7.3
Mova para o denominador usando a regra do expoente negativo .
Etapa 4.1.8
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.10
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.11
Multiplique por .
Etapa 4.1.12
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.13
Combine frações.
Toque para ver mais passagens...
Etapa 4.1.13.1
Some e .
Etapa 4.1.13.2
Combine e .
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Defina o numerador como igual a zero.
Etapa 5.3
Como , não há soluções.
Nenhuma solução
Nenhuma solução
Etapa 6
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 6.1
Converta expressões com expoentes fracionários em radicais.
Toque para ver mais passagens...
Etapa 6.1.1
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 6.1.2
Qualquer número elevado a é a própria base.
Etapa 6.2
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 6.3
Resolva .
Toque para ver mais passagens...
Etapa 6.3.1
Para remover o radical no lado esquerdo da equação, eleve ao quadrado os dois lados da equação.
Etapa 6.3.2
Simplifique cada lado da equação.
Toque para ver mais passagens...
Etapa 6.3.2.1
Use para reescrever como .
Etapa 6.3.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 6.3.2.2.1.1
Aplique a regra do produto a .
Etapa 6.3.2.2.1.2
Eleve à potência de .
Etapa 6.3.2.2.1.3
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 6.3.2.2.1.3.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 6.3.2.2.1.3.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.3.2.2.1.3.2.1
Cancele o fator comum.
Etapa 6.3.2.2.1.3.2.2
Reescreva a expressão.
Etapa 6.3.2.2.1.4
Simplifique.
Etapa 6.3.2.2.1.5
Aplique a propriedade distributiva.
Etapa 6.3.2.2.1.6
Multiplique.
Toque para ver mais passagens...
Etapa 6.3.2.2.1.6.1
Multiplique por .
Etapa 6.3.2.2.1.6.2
Multiplique por .
Etapa 6.3.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.3.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 6.3.3
Resolva .
Toque para ver mais passagens...
Etapa 6.3.3.1
Subtraia dos dois lados da equação.
Etapa 6.3.3.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 6.3.3.2.1
Divida cada termo em por .
Etapa 6.3.3.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.3.3.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.3.3.2.2.1.1
Cancele o fator comum.
Etapa 6.3.3.2.2.1.2
Divida por .
Etapa 6.3.3.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.3.3.2.3.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 6.3.3.2.3.1.1
Fatore de .
Etapa 6.3.3.2.3.1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 6.3.3.2.3.1.2.1
Fatore de .
Etapa 6.3.3.2.3.1.2.2
Cancele o fator comum.
Etapa 6.3.3.2.3.1.2.3
Reescreva a expressão.
Etapa 6.3.3.2.3.2
Mova o número negativo para a frente da fração.
Etapa 6.4
Defina o radicando em como menor do que para encontrar onde a expressão está indefinida.
Etapa 6.5
Resolva .
Toque para ver mais passagens...
Etapa 6.5.1
Subtraia dos dois lados da desigualdade.
Etapa 6.5.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 6.5.2.1
Divida cada termo em por .
Etapa 6.5.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.5.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.5.2.2.1.1
Cancele o fator comum.
Etapa 6.5.2.2.1.2
Divida por .
Etapa 6.5.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.5.2.3.1
Mova o número negativo para a frente da fração.
Etapa 6.6
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 9.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 9.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 9.1.2
Cancele o fator comum.
Etapa 9.1.3
Reescreva a expressão.
Etapa 9.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 9.2.1
Some e .
Etapa 9.2.2
Reescreva como .
Etapa 9.2.3
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 9.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 9.3.1
Cancele o fator comum.
Etapa 9.3.2
Reescreva a expressão.
Etapa 9.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 9.4.1
Elevar a qualquer potência positiva produz .
Etapa 9.4.2
Multiplique por .
Etapa 9.4.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 9.5
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Indefinido
Etapa 10
Como o teste da primeira derivada falhou, não há um extremo local.
Nenhum extremo local
Etapa 11