Insira um problema...
Cálculo Exemplos
Etapa 1
Remova os parênteses.
Etapa 2
Etapa 2.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
+ | - |
Etapa 2.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
+ | - |
Etapa 2.3
Multiplique o novo termo do quociente pelo divisor.
+ | - | ||||||
+ | + |
Etapa 2.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
+ | - | ||||||
- | - |
Etapa 2.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
+ | - | ||||||
- | - | ||||||
- |
Etapa 2.6
A resposta final é o quociente mais o resto sobre o divisor.
Etapa 3
Divida a integral única em várias integrais.
Etapa 4
Aplique a regra da constante.
Etapa 5
Como é constante com relação a , mova para fora da integral.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
Multiplique por .
Etapa 8
Etapa 8.1
Deixe . Encontre .
Etapa 8.1.1
Diferencie .
Etapa 8.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.1.5
Some e .
Etapa 8.2
Reescreva o problema usando e .
Etapa 9
A integral de com relação a é .
Etapa 10
Simplifique.
Etapa 11
Substitua todas as ocorrências de por .