Cálculo Exemplos

Encontre a Antiderivada (2x+1)/((x+2)^2)
Etapa 1
Escreva como uma função.
Etapa 2
É possível determinar a função encontrando a integral indefinida da derivada .
Etapa 3
Estabeleça a integral para resolver.
Etapa 4
Escreva a fração usando a decomposição da fração parcial.
Toque para ver mais passagens...
Etapa 4.1
Decomponha a fração e multiplique pelo denominador comum.
Toque para ver mais passagens...
Etapa 4.1.1
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 4.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 4.1.3
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 4.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.1.4.1
Cancele o fator comum.
Etapa 4.1.4.2
Divida por .
Etapa 4.1.5
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.1.5.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.1.5.1.1
Cancele o fator comum.
Etapa 4.1.5.1.2
Divida por .
Etapa 4.1.5.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 4.1.5.2.1
Fatore de .
Etapa 4.1.5.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 4.1.5.2.2.1
Multiplique por .
Etapa 4.1.5.2.2.2
Cancele o fator comum.
Etapa 4.1.5.2.2.3
Reescreva a expressão.
Etapa 4.1.5.2.2.4
Divida por .
Etapa 4.1.5.3
Aplique a propriedade distributiva.
Etapa 4.1.5.4
Mova para a esquerda de .
Etapa 4.1.6
Reordene e .
Etapa 4.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Toque para ver mais passagens...
Etapa 4.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 4.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 4.2.3
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 4.3
Resolva o sistema de equações.
Toque para ver mais passagens...
Etapa 4.3.1
Reescreva a equação como .
Etapa 4.3.2
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 4.3.2.1
Substitua todas as ocorrências de em por .
Etapa 4.3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.3.2.2.1
Multiplique por .
Etapa 4.3.3
Resolva em .
Toque para ver mais passagens...
Etapa 4.3.3.1
Reescreva a equação como .
Etapa 4.3.3.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 4.3.3.2.1
Subtraia dos dois lados da equação.
Etapa 4.3.3.2.2
Subtraia de .
Etapa 4.3.4
Resolva o sistema de equações.
Etapa 4.3.5
Liste todas as soluções.
Etapa 4.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para e .
Etapa 4.5
Mova o número negativo para a frente da fração.
Etapa 5
Divida a integral única em várias integrais.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
Como é constante com relação a , mova para fora da integral.
Etapa 8
Multiplique por .
Etapa 9
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 9.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 9.1.1
Diferencie .
Etapa 9.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 9.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 9.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 9.1.5
Some e .
Etapa 9.2
Reescreva o problema usando e .
Etapa 10
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 10.1
Mova para fora do denominador, elevando-o à potência.
Etapa 10.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 10.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 10.2.2
Multiplique por .
Etapa 11
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 12
Como é constante com relação a , mova para fora da integral.
Etapa 13
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 13.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 13.1.1
Diferencie .
Etapa 13.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 13.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 13.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 13.1.5
Some e .
Etapa 13.2
Reescreva o problema usando e .
Etapa 14
A integral de com relação a é .
Etapa 15
Simplifique.
Toque para ver mais passagens...
Etapa 15.1
Simplifique.
Etapa 15.2
Simplifique.
Toque para ver mais passagens...
Etapa 15.2.1
Multiplique por .
Etapa 15.2.2
Combine e .
Etapa 16
Substitua novamente para cada variável de substituição de integração.
Toque para ver mais passagens...
Etapa 16.1
Substitua todas as ocorrências de por .
Etapa 16.2
Substitua todas as ocorrências de por .
Etapa 17
A resposta é a primitiva da função .