Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.2
Diferencie.
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.4
Simplifique a expressão.
Etapa 1.2.4.1
Some e .
Etapa 1.2.4.2
Multiplique por .
Etapa 1.3
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.4
Diferencie.
Etapa 1.4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.4
Simplifique a expressão.
Etapa 1.4.4.1
Some e .
Etapa 1.4.4.2
Multiplique por .
Etapa 1.4.5
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.4.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.8
Simplifique somando os termos.
Etapa 1.4.8.1
Some e .
Etapa 1.4.8.2
Multiplique por .
Etapa 1.4.8.3
Some e .
Etapa 1.4.8.4
Some e .
Etapa 1.5
Simplifique.
Etapa 1.5.1
Aplique a propriedade distributiva.
Etapa 1.5.2
Aplique a propriedade distributiva.
Etapa 1.5.3
Aplique a propriedade distributiva.
Etapa 1.5.4
Aplique a propriedade distributiva.
Etapa 1.5.5
Aplique a propriedade distributiva.
Etapa 1.5.6
Aplique a propriedade distributiva.
Etapa 1.5.7
Combine os termos.
Etapa 1.5.7.1
Eleve à potência de .
Etapa 1.5.7.2
Eleve à potência de .
Etapa 1.5.7.3
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.5.7.4
Some e .
Etapa 1.5.7.5
Multiplique por .
Etapa 1.5.7.6
Multiplique por .
Etapa 1.5.7.7
Some e .
Etapa 1.5.7.8
Eleve à potência de .
Etapa 1.5.7.9
Eleve à potência de .
Etapa 1.5.7.10
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.5.7.11
Some e .
Etapa 1.5.7.12
Multiplique por .
Etapa 1.5.7.13
Mova para a esquerda de .
Etapa 1.5.7.14
Multiplique por .
Etapa 1.5.7.15
Some e .
Etapa 1.5.7.16
Some e .
Etapa 1.5.7.17
Subtraia de .
Etapa 1.5.7.18
Some e .
Etapa 1.5.7.19
Subtraia de .
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Diferencie usando a regra da constante.
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Some e .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Etapa 4.1
Encontre a primeira derivada.
Etapa 4.1.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 4.1.2
Diferencie.
Etapa 4.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.4
Simplifique a expressão.
Etapa 4.1.2.4.1
Some e .
Etapa 4.1.2.4.2
Multiplique por .
Etapa 4.1.3
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 4.1.4
Diferencie.
Etapa 4.1.4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.4.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.4.4
Simplifique a expressão.
Etapa 4.1.4.4.1
Some e .
Etapa 4.1.4.4.2
Multiplique por .
Etapa 4.1.4.5
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.4.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.4.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.4.8
Simplifique somando os termos.
Etapa 4.1.4.8.1
Some e .
Etapa 4.1.4.8.2
Multiplique por .
Etapa 4.1.4.8.3
Some e .
Etapa 4.1.4.8.4
Some e .
Etapa 4.1.5
Simplifique.
Etapa 4.1.5.1
Aplique a propriedade distributiva.
Etapa 4.1.5.2
Aplique a propriedade distributiva.
Etapa 4.1.5.3
Aplique a propriedade distributiva.
Etapa 4.1.5.4
Aplique a propriedade distributiva.
Etapa 4.1.5.5
Aplique a propriedade distributiva.
Etapa 4.1.5.6
Aplique a propriedade distributiva.
Etapa 4.1.5.7
Combine os termos.
Etapa 4.1.5.7.1
Eleve à potência de .
Etapa 4.1.5.7.2
Eleve à potência de .
Etapa 4.1.5.7.3
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.1.5.7.4
Some e .
Etapa 4.1.5.7.5
Multiplique por .
Etapa 4.1.5.7.6
Multiplique por .
Etapa 4.1.5.7.7
Some e .
Etapa 4.1.5.7.8
Eleve à potência de .
Etapa 4.1.5.7.9
Eleve à potência de .
Etapa 4.1.5.7.10
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.1.5.7.11
Some e .
Etapa 4.1.5.7.12
Multiplique por .
Etapa 4.1.5.7.13
Mova para a esquerda de .
Etapa 4.1.5.7.14
Multiplique por .
Etapa 4.1.5.7.15
Some e .
Etapa 4.1.5.7.16
Some e .
Etapa 4.1.5.7.17
Subtraia de .
Etapa 4.1.5.7.18
Some e .
Etapa 4.1.5.7.19
Subtraia de .
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Some aos dois lados da equação.
Etapa 5.3
Divida cada termo em por e simplifique.
Etapa 5.3.1
Divida cada termo em por .
Etapa 5.3.2
Simplifique o lado esquerdo.
Etapa 5.3.2.1
Cancele o fator comum de .
Etapa 5.3.2.1.1
Cancele o fator comum.
Etapa 5.3.2.1.2
Divida por .
Etapa 5.4
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 5.5
Simplifique .
Etapa 5.5.1
Reescreva como .
Etapa 5.5.2
Multiplique por .
Etapa 5.5.3
Combine e simplifique o denominador.
Etapa 5.5.3.1
Multiplique por .
Etapa 5.5.3.2
Eleve à potência de .
Etapa 5.5.3.3
Eleve à potência de .
Etapa 5.5.3.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 5.5.3.5
Some e .
Etapa 5.5.3.6
Reescreva como .
Etapa 5.5.3.6.1
Use para reescrever como .
Etapa 5.5.3.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 5.5.3.6.3
Combine e .
Etapa 5.5.3.6.4
Cancele o fator comum de .
Etapa 5.5.3.6.4.1
Cancele o fator comum.
Etapa 5.5.3.6.4.2
Reescreva a expressão.
Etapa 5.5.3.6.5
Avalie o expoente.
Etapa 5.5.4
Simplifique o numerador.
Etapa 5.5.4.1
Combine usando a regra do produto para radicais.
Etapa 5.5.4.2
Multiplique por .
Etapa 5.6
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5.6.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 5.6.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 5.6.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 6
Etapa 6.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Etapa 9.1
Fatore de .
Etapa 9.2
Cancele o fator comum.
Etapa 9.3
Reescreva a expressão.
Etapa 10
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 11
Etapa 11.1
Substitua a variável por na expressão.
Etapa 11.2
Simplifique o resultado.
Etapa 11.2.1
Expanda usando o método FOIL.
Etapa 11.2.1.1
Aplique a propriedade distributiva.
Etapa 11.2.1.2
Aplique a propriedade distributiva.
Etapa 11.2.1.3
Aplique a propriedade distributiva.
Etapa 11.2.2
Simplifique e combine termos semelhantes.
Etapa 11.2.2.1
Simplifique cada termo.
Etapa 11.2.2.1.1
Multiplique .
Etapa 11.2.2.1.1.1
Multiplique por .
Etapa 11.2.2.1.1.2
Eleve à potência de .
Etapa 11.2.2.1.1.3
Eleve à potência de .
Etapa 11.2.2.1.1.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 11.2.2.1.1.5
Some e .
Etapa 11.2.2.1.1.6
Multiplique por .
Etapa 11.2.2.1.2
Reescreva como .
Etapa 11.2.2.1.2.1
Use para reescrever como .
Etapa 11.2.2.1.2.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 11.2.2.1.2.3
Combine e .
Etapa 11.2.2.1.2.4
Cancele o fator comum de .
Etapa 11.2.2.1.2.4.1
Cancele o fator comum.
Etapa 11.2.2.1.2.4.2
Reescreva a expressão.
Etapa 11.2.2.1.2.5
Avalie o expoente.
Etapa 11.2.2.1.3
Cancele o fator comum de e .
Etapa 11.2.2.1.3.1
Fatore de .
Etapa 11.2.2.1.3.2
Cancele os fatores comuns.
Etapa 11.2.2.1.3.2.1
Fatore de .
Etapa 11.2.2.1.3.2.2
Cancele o fator comum.
Etapa 11.2.2.1.3.2.3
Reescreva a expressão.
Etapa 11.2.2.1.4
Multiplique por .
Etapa 11.2.2.1.5
Combine e .
Etapa 11.2.2.1.6
Multiplique por .
Etapa 11.2.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 11.2.2.3
Combine e .
Etapa 11.2.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 11.2.2.5
Simplifique o numerador.
Etapa 11.2.2.5.1
Multiplique por .
Etapa 11.2.2.5.2
Some e .
Etapa 11.2.2.6
Combine os numeradores em relação ao denominador comum.
Etapa 11.2.3
Combine os numeradores em relação ao denominador comum.
Etapa 11.2.4
Some e .
Etapa 11.2.5
Aplique a propriedade distributiva.
Etapa 11.2.6
Multiplique .
Etapa 11.2.6.1
Multiplique por .
Etapa 11.2.6.2
Multiplique por .
Etapa 11.2.7
Cancele o fator comum de .
Etapa 11.2.7.1
Fatore de .
Etapa 11.2.7.2
Cancele o fator comum.
Etapa 11.2.7.3
Reescreva a expressão.
Etapa 11.2.8
Simplifique cada termo.
Etapa 11.2.8.1
Aplique a propriedade distributiva.
Etapa 11.2.8.2
Multiplique .
Etapa 11.2.8.2.1
Eleve à potência de .
Etapa 11.2.8.2.2
Eleve à potência de .
Etapa 11.2.8.2.3
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 11.2.8.2.4
Some e .
Etapa 11.2.8.3
Simplifique cada termo.
Etapa 11.2.8.3.1
Reescreva como .
Etapa 11.2.8.3.1.1
Use para reescrever como .
Etapa 11.2.8.3.1.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 11.2.8.3.1.3
Combine e .
Etapa 11.2.8.3.1.4
Cancele o fator comum de .
Etapa 11.2.8.3.1.4.1
Cancele o fator comum.
Etapa 11.2.8.3.1.4.2
Reescreva a expressão.
Etapa 11.2.8.3.1.5
Avalie o expoente.
Etapa 11.2.8.3.2
Multiplique por .
Etapa 11.2.8.4
Aplique a propriedade distributiva.
Etapa 11.2.8.5
Multiplique por .
Etapa 11.2.8.6
Multiplique por .
Etapa 11.2.9
Para escrever como fração com um denominador comum, multiplique por .
Etapa 11.2.10
Combine e .
Etapa 11.2.11
Simplifique a expressão.
Etapa 11.2.11.1
Combine os numeradores em relação ao denominador comum.
Etapa 11.2.11.2
Multiplique por .
Etapa 11.2.11.3
Subtraia de .
Etapa 11.2.12
Para escrever como fração com um denominador comum, multiplique por .
Etapa 11.2.13
Combine frações.
Etapa 11.2.13.1
Combine e .
Etapa 11.2.13.2
Combine os numeradores em relação ao denominador comum.
Etapa 11.2.14
Simplifique o numerador.
Etapa 11.2.14.1
Multiplique por .
Etapa 11.2.14.2
Subtraia de .
Etapa 11.2.15
Simplifique com fatoração.
Etapa 11.2.15.1
Reescreva como .
Etapa 11.2.15.2
Fatore de .
Etapa 11.2.15.3
Fatore de .
Etapa 11.2.15.4
Mova o número negativo para a frente da fração.
Etapa 11.2.16
A resposta final é .
Etapa 12
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 13
Etapa 13.1
Cancele o fator comum de .
Etapa 13.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 13.1.2
Fatore de .
Etapa 13.1.3
Cancele o fator comum.
Etapa 13.1.4
Reescreva a expressão.
Etapa 13.2
Multiplique por .
Etapa 14
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 15
Etapa 15.1
Substitua a variável por na expressão.
Etapa 15.2
Simplifique o resultado.
Etapa 15.2.1
Expanda usando o método FOIL.
Etapa 15.2.1.1
Aplique a propriedade distributiva.
Etapa 15.2.1.2
Aplique a propriedade distributiva.
Etapa 15.2.1.3
Aplique a propriedade distributiva.
Etapa 15.2.2
Simplifique e combine termos semelhantes.
Etapa 15.2.2.1
Simplifique cada termo.
Etapa 15.2.2.1.1
Multiplique .
Etapa 15.2.2.1.1.1
Multiplique por .
Etapa 15.2.2.1.1.2
Multiplique por .
Etapa 15.2.2.1.1.3
Multiplique por .
Etapa 15.2.2.1.1.4
Eleve à potência de .
Etapa 15.2.2.1.1.5
Eleve à potência de .
Etapa 15.2.2.1.1.6
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 15.2.2.1.1.7
Some e .
Etapa 15.2.2.1.1.8
Multiplique por .
Etapa 15.2.2.1.2
Reescreva como .
Etapa 15.2.2.1.2.1
Use para reescrever como .
Etapa 15.2.2.1.2.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 15.2.2.1.2.3
Combine e .
Etapa 15.2.2.1.2.4
Cancele o fator comum de .
Etapa 15.2.2.1.2.4.1
Cancele o fator comum.
Etapa 15.2.2.1.2.4.2
Reescreva a expressão.
Etapa 15.2.2.1.2.5
Avalie o expoente.
Etapa 15.2.2.1.3
Cancele o fator comum de e .
Etapa 15.2.2.1.3.1
Fatore de .
Etapa 15.2.2.1.3.2
Cancele os fatores comuns.
Etapa 15.2.2.1.3.2.1
Fatore de .
Etapa 15.2.2.1.3.2.2
Cancele o fator comum.
Etapa 15.2.2.1.3.2.3
Reescreva a expressão.
Etapa 15.2.2.1.4
Multiplique por .
Etapa 15.2.2.1.5
Multiplique .
Etapa 15.2.2.1.5.1
Multiplique por .
Etapa 15.2.2.1.5.2
Combine e .
Etapa 15.2.2.1.6
Mova o número negativo para a frente da fração.
Etapa 15.2.2.1.7
Multiplique por .
Etapa 15.2.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 15.2.2.3
Combine e .
Etapa 15.2.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 15.2.2.5
Simplifique o numerador.
Etapa 15.2.2.5.1
Multiplique por .
Etapa 15.2.2.5.2
Some e .
Etapa 15.2.2.6
Combine os numeradores em relação ao denominador comum.
Etapa 15.2.3
Combine os numeradores em relação ao denominador comum.
Etapa 15.2.4
Subtraia de .
Etapa 15.2.5
Aplique a propriedade distributiva.
Etapa 15.2.6
Multiplique .
Etapa 15.2.6.1
Multiplique por .
Etapa 15.2.6.2
Multiplique por .
Etapa 15.2.7
Cancele o fator comum de .
Etapa 15.2.7.1
Fatore de .
Etapa 15.2.7.2
Cancele o fator comum.
Etapa 15.2.7.3
Reescreva a expressão.
Etapa 15.2.8
Simplifique cada termo.
Etapa 15.2.8.1
Aplique a propriedade distributiva.
Etapa 15.2.8.2
Multiplique .
Etapa 15.2.8.2.1
Eleve à potência de .
Etapa 15.2.8.2.2
Eleve à potência de .
Etapa 15.2.8.2.3
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 15.2.8.2.4
Some e .
Etapa 15.2.8.3
Simplifique cada termo.
Etapa 15.2.8.3.1
Reescreva como .
Etapa 15.2.8.3.1.1
Use para reescrever como .
Etapa 15.2.8.3.1.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 15.2.8.3.1.3
Combine e .
Etapa 15.2.8.3.1.4
Cancele o fator comum de .
Etapa 15.2.8.3.1.4.1
Cancele o fator comum.
Etapa 15.2.8.3.1.4.2
Reescreva a expressão.
Etapa 15.2.8.3.1.5
Avalie o expoente.
Etapa 15.2.8.3.2
Multiplique por .
Etapa 15.2.8.4
Aplique a propriedade distributiva.
Etapa 15.2.8.5
Multiplique por .
Etapa 15.2.8.6
Multiplique por .
Etapa 15.2.9
Para escrever como fração com um denominador comum, multiplique por .
Etapa 15.2.10
Combine frações.
Etapa 15.2.10.1
Combine e .
Etapa 15.2.10.2
Simplifique a expressão.
Etapa 15.2.10.2.1
Combine os numeradores em relação ao denominador comum.
Etapa 15.2.10.2.2
Multiplique por .
Etapa 15.2.11
Simplifique o numerador.
Etapa 15.2.11.1
Aplique a propriedade distributiva.
Etapa 15.2.11.2
Multiplique por .
Etapa 15.2.11.3
Multiplique por .
Etapa 15.2.11.4
Subtraia de .
Etapa 15.2.12
Para escrever como fração com um denominador comum, multiplique por .
Etapa 15.2.13
Combine frações.
Etapa 15.2.13.1
Combine e .
Etapa 15.2.13.2
Combine os numeradores em relação ao denominador comum.
Etapa 15.2.14
Simplifique o numerador.
Etapa 15.2.14.1
Multiplique por .
Etapa 15.2.14.2
Some e .
Etapa 15.2.15
Simplifique com fatoração.
Etapa 15.2.15.1
Reescreva como .
Etapa 15.2.15.2
Fatore de .
Etapa 15.2.15.3
Fatore de .
Etapa 15.2.15.4
Mova o número negativo para a frente da fração.
Etapa 15.2.16
A resposta final é .
Etapa 16
Esses são os extremos locais para .
é um mínimo local
é um máximo local
Etapa 17