Cálculo Exemplos

Avalie o Limite limite à medida que x aproxima 2/3 de (4-9x^2)/(2-3x)
Etapa 1
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Toque para ver mais passagens...
Etapa 1.1.2.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.1.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.2.1.4
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.2
Avalie o limite de substituindo por .
Etapa 1.1.2.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.1.2.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.2.3.1.1
Aplique a regra do produto a .
Etapa 1.1.2.3.1.2
Eleve à potência de .
Etapa 1.1.2.3.1.3
Eleve à potência de .
Etapa 1.1.2.3.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.2.3.1.4.1
Fatore de .
Etapa 1.1.2.3.1.4.2
Cancele o fator comum.
Etapa 1.1.2.3.1.4.3
Reescreva a expressão.
Etapa 1.1.2.3.1.5
Multiplique por .
Etapa 1.1.2.3.2
Subtraia de .
Etapa 1.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.3.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.1.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.3.2
Avalie o limite de substituindo por .
Etapa 1.1.3.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.1.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.3.3.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.3.3.1.1.1
Fatore de .
Etapa 1.1.3.3.1.1.2
Cancele o fator comum.
Etapa 1.1.3.3.1.1.3
Reescreva a expressão.
Etapa 1.1.3.3.1.2
Multiplique por .
Etapa 1.1.3.3.2
Subtraia de .
Etapa 1.1.3.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.4
Avalie .
Toque para ver mais passagens...
Etapa 1.3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.4.3
Multiplique por .
Etapa 1.3.5
Subtraia de .
Etapa 1.3.6
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.8
Avalie .
Toque para ver mais passagens...
Etapa 1.3.8.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.8.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.8.3
Multiplique por .
Etapa 1.3.9
Subtraia de .
Etapa 1.4
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.4.1
Fatore de .
Etapa 1.4.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.4.2.1
Fatore de .
Etapa 1.4.2.2
Cancele o fator comum.
Etapa 1.4.2.3
Reescreva a expressão.
Etapa 1.4.2.4
Divida por .
Etapa 2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3
Avalie o limite de substituindo por .
Etapa 4
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 4.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.1.1
Fatore de .
Etapa 4.1.2
Cancele o fator comum.
Etapa 4.1.3
Reescreva a expressão.
Etapa 4.2
Multiplique por .