Insira um problema...
Cálculo Exemplos
Etapa 1
Combine e .
Etapa 2
Etapa 2.1
Deixe . Encontre .
Etapa 2.1.1
Diferencie .
Etapa 2.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.4
Multiplique por .
Etapa 2.2
Reescreva o problema usando e .
Etapa 3
Etapa 3.1
Fatore de .
Etapa 3.2
Aplique a regra do produto a .
Etapa 3.3
Eleve à potência de .
Etapa 4
Etapa 4.1
Deixe . Encontre .
Etapa 4.1.1
Diferencie .
Etapa 4.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.3
Avalie .
Etapa 4.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.3.3
Multiplique por .
Etapa 4.1.4
Diferencie usando a regra da constante.
Etapa 4.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.4.2
Some e .
Etapa 4.2
Reescreva o problema usando e .
Etapa 5
Etapa 5.1
Combine e .
Etapa 5.2
Combine e .
Etapa 5.3
Cancele o fator comum de e .
Etapa 5.3.1
Fatore de .
Etapa 5.3.2
Cancele os fatores comuns.
Etapa 5.3.2.1
Fatore de .
Etapa 5.3.2.2
Cancele o fator comum.
Etapa 5.3.2.3
Reescreva a expressão.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 8
Etapa 8.1
Reescreva como .
Etapa 8.2
Simplifique.
Etapa 8.2.1
Multiplique por .
Etapa 8.2.2
Multiplique por .
Etapa 9
Etapa 9.1
Substitua todas as ocorrências de por .
Etapa 9.2
Substitua todas as ocorrências de por .
Etapa 10
Reordene os termos.