Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Etapa 1.1.2.1
Avalie o limite.
Etapa 1.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.1.3
Mova o limite para o expoente.
Etapa 1.1.2.2
Avalie o limite de substituindo por .
Etapa 1.1.2.3
Simplifique a resposta.
Etapa 1.1.2.3.1
Simplifique cada termo.
Etapa 1.1.2.3.1.1
Qualquer coisa elevada a é .
Etapa 1.1.2.3.1.2
Multiplique por .
Etapa 1.1.2.3.2
Subtraia de .
Etapa 1.1.3
Avalie o limite do denominador.
Etapa 1.1.3.1
Avalie o limite.
Etapa 1.1.3.1.1
Mova o limite para dentro do logaritmo.
Etapa 1.1.3.1.2
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.1.4
Mova o limite para o expoente.
Etapa 1.1.3.2
Avalie o limite de substituindo por .
Etapa 1.1.3.3
Simplifique a resposta.
Etapa 1.1.3.3.1
Simplifique cada termo.
Etapa 1.1.3.3.1.1
Qualquer coisa elevada a é .
Etapa 1.1.3.3.1.2
Multiplique por .
Etapa 1.1.3.3.2
Subtraia de .
Etapa 1.1.3.3.3
O logaritmo natural de é .
Etapa 1.1.3.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.4
Avalie .
Etapa 1.3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.4.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 1.3.5
Subtraia de .
Etapa 1.3.6
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.3.6.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.6.2
A derivada de em relação a é .
Etapa 1.3.6.3
Substitua todas as ocorrências de por .
Etapa 1.3.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.9
Some e .
Etapa 1.3.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.11
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 1.3.12
Combine e .
Etapa 1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 1.5
Combine os fatores.
Etapa 1.5.1
Multiplique por .
Etapa 1.5.2
Multiplique por .
Etapa 1.5.3
Combine e .
Etapa 1.6
Cancele o fator comum de .
Etapa 1.6.1
Cancele o fator comum.
Etapa 1.6.2
Divida por .
Etapa 2
Etapa 2.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.3
Mova o limite para o expoente.
Etapa 3
Avalie o limite de substituindo por .
Etapa 4
Etapa 4.1
Simplifique cada termo.
Etapa 4.1.1
Qualquer coisa elevada a é .
Etapa 4.1.2
Multiplique por .
Etapa 4.2
Subtraia de .