Cálculo Exemplos

Determina o valor máximo/mínimo f(x)=2/5x^5+5x^4+16x^3-15
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Combine e .
Etapa 1.2.4
Multiplique por .
Etapa 1.2.5
Combine e .
Etapa 1.2.6
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.2.6.1
Fatore de .
Etapa 1.2.6.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.2.6.2.1
Fatore de .
Etapa 1.2.6.2.2
Cancele o fator comum.
Etapa 1.2.6.2.3
Reescreva a expressão.
Etapa 1.2.6.2.4
Divida por .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Avalie .
Toque para ver mais passagens...
Etapa 1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.3
Multiplique por .
Etapa 1.5
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.5.2
Some e .
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Avalie .
Toque para ver mais passagens...
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4.3
Multiplique por .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.2
Avalie .
Toque para ver mais passagens...
Etapa 4.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2.3
Combine e .
Etapa 4.1.2.4
Multiplique por .
Etapa 4.1.2.5
Combine e .
Etapa 4.1.2.6
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 4.1.2.6.1
Fatore de .
Etapa 4.1.2.6.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 4.1.2.6.2.1
Fatore de .
Etapa 4.1.2.6.2.2
Cancele o fator comum.
Etapa 4.1.2.6.2.3
Reescreva a expressão.
Etapa 4.1.2.6.2.4
Divida por .
Etapa 4.1.3
Avalie .
Toque para ver mais passagens...
Etapa 4.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.3.3
Multiplique por .
Etapa 4.1.4
Avalie .
Toque para ver mais passagens...
Etapa 4.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.4.3
Multiplique por .
Etapa 4.1.5
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 4.1.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.5.2
Some e .
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Fatore o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 5.2.1
Fatore de .
Toque para ver mais passagens...
Etapa 5.2.1.1
Fatore de .
Etapa 5.2.1.2
Fatore de .
Etapa 5.2.1.3
Fatore de .
Etapa 5.2.1.4
Fatore de .
Etapa 5.2.1.5
Fatore de .
Etapa 5.2.2
Fatore.
Toque para ver mais passagens...
Etapa 5.2.2.1
Fatore usando o método AC.
Toque para ver mais passagens...
Etapa 5.2.2.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 5.2.2.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 5.2.2.2
Remova os parênteses desnecessários.
Etapa 5.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 5.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 5.4.1
Defina como igual a .
Etapa 5.4.2
Resolva para .
Toque para ver mais passagens...
Etapa 5.4.2.1
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 5.4.2.2
Simplifique .
Toque para ver mais passagens...
Etapa 5.4.2.2.1
Reescreva como .
Etapa 5.4.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 5.4.2.2.3
Mais ou menos é .
Etapa 5.5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 5.5.1
Defina como igual a .
Etapa 5.5.2
Subtraia dos dois lados da equação.
Etapa 5.6
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 5.6.1
Defina como igual a .
Etapa 5.6.2
Subtraia dos dois lados da equação.
Etapa 5.7
A solução final são todos os valores que tornam verdadeiro.
Etapa 6
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 6.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 9.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 9.1.1
Elevar a qualquer potência positiva produz .
Etapa 9.1.2
Multiplique por .
Etapa 9.1.3
Elevar a qualquer potência positiva produz .
Etapa 9.1.4
Multiplique por .
Etapa 9.1.5
Multiplique por .
Etapa 9.2
Simplifique somando os números.
Toque para ver mais passagens...
Etapa 9.2.1
Some e .
Etapa 9.2.2
Some e .
Etapa 10
Como há pelo menos um ponto com ou segunda derivada indefinida, aplique o teste da primeira derivada.
Toque para ver mais passagens...
Etapa 10.1
Divida em intervalos separados em torno dos valores de que tornam a primeira derivada ou indefinida.
Etapa 10.2
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 10.2.1
Substitua a variável por na expressão.
Etapa 10.2.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 10.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.2.2.1.1
Eleve à potência de .
Etapa 10.2.2.1.2
Multiplique por .
Etapa 10.2.2.1.3
Eleve à potência de .
Etapa 10.2.2.1.4
Multiplique por .
Etapa 10.2.2.1.5
Eleve à potência de .
Etapa 10.2.2.1.6
Multiplique por .
Etapa 10.2.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 10.2.2.2.1
Subtraia de .
Etapa 10.2.2.2.2
Some e .
Etapa 10.2.2.3
A resposta final é .
Etapa 10.3
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 10.3.1
Substitua a variável por na expressão.
Etapa 10.3.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 10.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.3.2.1.1
Eleve à potência de .
Etapa 10.3.2.1.2
Multiplique por .
Etapa 10.3.2.1.3
Eleve à potência de .
Etapa 10.3.2.1.4
Multiplique por .
Etapa 10.3.2.1.5
Eleve à potência de .
Etapa 10.3.2.1.6
Multiplique por .
Etapa 10.3.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 10.3.2.2.1
Subtraia de .
Etapa 10.3.2.2.2
Some e .
Etapa 10.3.2.3
A resposta final é .
Etapa 10.4
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 10.4.1
Substitua a variável por na expressão.
Etapa 10.4.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 10.4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.4.2.1.1
Eleve à potência de .
Etapa 10.4.2.1.2
Multiplique por .
Etapa 10.4.2.1.3
Eleve à potência de .
Etapa 10.4.2.1.4
Multiplique por .
Etapa 10.4.2.1.5
Eleve à potência de .
Etapa 10.4.2.1.6
Multiplique por .
Etapa 10.4.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 10.4.2.2.1
Subtraia de .
Etapa 10.4.2.2.2
Some e .
Etapa 10.4.2.3
A resposta final é .
Etapa 10.5
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 10.5.1
Substitua a variável por na expressão.
Etapa 10.5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 10.5.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.5.2.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 10.5.2.1.1.1
Multiplique por .
Toque para ver mais passagens...
Etapa 10.5.2.1.1.1.1
Eleve à potência de .
Etapa 10.5.2.1.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 10.5.2.1.1.2
Some e .
Etapa 10.5.2.1.2
Eleve à potência de .
Etapa 10.5.2.1.3
Eleve à potência de .
Etapa 10.5.2.1.4
Multiplique por .
Etapa 10.5.2.1.5
Eleve à potência de .
Etapa 10.5.2.1.6
Multiplique por .
Etapa 10.5.2.2
Simplifique somando os números.
Toque para ver mais passagens...
Etapa 10.5.2.2.1
Some e .
Etapa 10.5.2.2.2
Some e .
Etapa 10.5.2.3
A resposta final é .
Etapa 10.6
Como a primeira derivada mudou os sinais de positivo para negativo em torno de , então é um máximo local.
é um máximo local
Etapa 10.7
Como a primeira derivada mudou os sinais de negativo para positivo em torno de , então é um mínimo local.
é um mínimo local
Etapa 10.8
Como a primeira derivada não mudou os sinais em torno de , este não é um máximo local nem um mínimo local.
Não é um máximo nem um mínimo local
Etapa 10.9
Esses são os extremos locais para .
é um máximo local
é um mínimo local
é um máximo local
é um mínimo local
Etapa 11