Insira um problema...
Cálculo Exemplos
Etapa 1
Divida o numerador e o denominador pela potência mais alta de no denominador, que é .
Etapa 2
Etapa 2.1
Simplifique cada termo.
Etapa 2.1.1
Cancele o fator comum de e .
Etapa 2.1.1.1
Fatore de .
Etapa 2.1.1.2
Cancele os fatores comuns.
Etapa 2.1.1.2.1
Fatore de .
Etapa 2.1.1.2.2
Cancele o fator comum.
Etapa 2.1.1.2.3
Reescreva a expressão.
Etapa 2.1.2
Cancele o fator comum de e .
Etapa 2.1.2.1
Fatore de .
Etapa 2.1.2.2
Cancele os fatores comuns.
Etapa 2.1.2.2.1
Fatore de .
Etapa 2.1.2.2.2
Cancele o fator comum.
Etapa 2.1.2.2.3
Reescreva a expressão.
Etapa 2.1.3
Mova o número negativo para a frente da fração.
Etapa 2.1.4
Cancele o fator comum de e .
Etapa 2.1.4.1
Fatore de .
Etapa 2.1.4.2
Cancele os fatores comuns.
Etapa 2.1.4.2.1
Fatore de .
Etapa 2.1.4.2.2
Cancele o fator comum.
Etapa 2.1.4.2.3
Reescreva a expressão.
Etapa 2.1.5
Mova o número negativo para a frente da fração.
Etapa 2.1.6
Mova o número negativo para a frente da fração.
Etapa 2.2
Simplifique cada termo.
Etapa 2.2.1
Cancele o fator comum de .
Etapa 2.2.1.1
Cancele o fator comum.
Etapa 2.2.1.2
Divida por .
Etapa 2.2.2
Cancele o fator comum de e .
Etapa 2.2.2.1
Fatore de .
Etapa 2.2.2.2
Cancele os fatores comuns.
Etapa 2.2.2.2.1
Fatore de .
Etapa 2.2.2.2.2
Cancele o fator comum.
Etapa 2.2.2.2.3
Reescreva a expressão.
Etapa 2.2.3
Mova o número negativo para a frente da fração.
Etapa 2.2.4
Cancele o fator comum de e .
Etapa 2.2.4.1
Fatore de .
Etapa 2.2.4.2
Cancele os fatores comuns.
Etapa 2.2.4.2.1
Fatore de .
Etapa 2.2.4.2.2
Cancele o fator comum.
Etapa 2.2.4.2.3
Reescreva a expressão.
Etapa 2.3
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 2.4
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.5
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3
Como o numerador se aproxima de um número real, enquanto o denominador é ilimitado, a fração se aproxima de .
Etapa 4
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 5
Como o numerador se aproxima de um número real, enquanto o denominador é ilimitado, a fração se aproxima de .
Etapa 6
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 7
Como o numerador se aproxima de um número real, enquanto o denominador é ilimitado, a fração se aproxima de .
Etapa 8
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 9
Como o numerador se aproxima de um número real, enquanto o denominador é ilimitado, a fração se aproxima de .
Etapa 10
Etapa 10.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 10.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 10.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 11
Como o numerador se aproxima de um número real, enquanto o denominador é ilimitado, a fração se aproxima de .
Etapa 12
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 13
Como o numerador se aproxima de um número real, enquanto o denominador é ilimitado, a fração se aproxima de .
Etapa 14
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 15
Como o numerador se aproxima de um número real, enquanto o denominador é ilimitado, a fração se aproxima de .
Etapa 16
Etapa 16.1
Simplifique o numerador.
Etapa 16.1.1
Multiplique por .
Etapa 16.1.2
Multiplique por .
Etapa 16.1.3
Multiplique por .
Etapa 16.1.4
Multiplique por .
Etapa 16.1.5
Some e .
Etapa 16.1.6
Some e .
Etapa 16.1.7
Some e .
Etapa 16.2
Simplifique o denominador.
Etapa 16.2.1
Multiplique por .
Etapa 16.2.2
Multiplique por .
Etapa 16.2.3
Multiplique por .
Etapa 16.2.4
Some e .
Etapa 16.2.5
Some e .
Etapa 16.2.6
Some e .
Etapa 16.3
Divida por .