Insira um problema...
Cálculo Exemplos
Etapa 1
Escreva como uma função.
Etapa 2
É possível determinar a função encontrando a integral indefinida da derivada .
Etapa 3
Estabeleça a integral para resolver.
Etapa 4
Etapa 4.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
- | + |
Etapa 4.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
- | + |
Etapa 4.3
Multiplique o novo termo do quociente pelo divisor.
- | + | ||||||
+ | - |
Etapa 4.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
- | + | ||||||
- | + |
Etapa 4.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
- | + | ||||||
- | + | ||||||
+ |
Etapa 4.6
A resposta final é o quociente mais o resto sobre o divisor.
Etapa 5
Divida a integral única em várias integrais.
Etapa 6
Aplique a regra da constante.
Etapa 7
Como é constante com relação a , mova para fora da integral.
Etapa 8
Etapa 8.1
Deixe . Encontre .
Etapa 8.1.1
Diferencie .
Etapa 8.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.1.3
Avalie .
Etapa 8.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.1.3.3
Multiplique por .
Etapa 8.1.4
Diferencie usando a regra da constante.
Etapa 8.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.1.4.2
Some e .
Etapa 8.2
Reescreva o problema usando e .
Etapa 9
Etapa 9.1
Multiplique por .
Etapa 9.2
Mova para a esquerda de .
Etapa 10
Como é constante com relação a , mova para fora da integral.
Etapa 11
Etapa 11.1
Multiplique por .
Etapa 11.2
Multiplique por .
Etapa 12
A integral de com relação a é .
Etapa 13
Simplifique.
Etapa 14
Substitua todas as ocorrências de por .
Etapa 15
A resposta é a primitiva da função .