Cálculo Exemplos

Avalie a Integral integral de 3x(2x-1)^2 com relação a x
Etapa 1
Como é constante com relação a , mova para fora da integral.
Etapa 2
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.1.1
Diferencie .
Etapa 2.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.3
Avalie .
Toque para ver mais passagens...
Etapa 2.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.3.3
Multiplique por .
Etapa 2.1.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 2.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.4.2
Some e .
Etapa 2.2
Reescreva o problema usando e .
Etapa 3
Combine e .
Etapa 4
Simplifique.
Toque para ver mais passagens...
Etapa 4.1
Aplique a propriedade distributiva.
Etapa 4.2
Multiplique por .
Etapa 4.3
Eleve à potência de .
Etapa 4.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.5
Some e .
Etapa 4.6
Multiplique por .
Etapa 4.7
Multiplique por .
Etapa 4.8
Multiplique por .
Etapa 5
Divida a integral única em várias integrais.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 8
Combine e .
Etapa 9
Como é constante com relação a , mova para fora da integral.
Etapa 10
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 11
Simplifique.
Toque para ver mais passagens...
Etapa 11.1
Combine e .
Etapa 11.2
Simplifique.
Etapa 12
Substitua todas as ocorrências de por .
Etapa 13
Reordene os termos.