Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.2
O limite no menos infinito de um polinômio de grau ímpar cujo coeficiente de maior ordem é positivo é menos infinito.
Etapa 1.3
O limite no menos infinito de um polinômio de grau ímpar cujo coeficiente de maior ordem é positivo é menos infinito.
Etapa 1.4
Infinito divido por infinito é indefinido.
Indefinido
Etapa 2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 3
Etapa 3.1
Diferencie o numerador e o denominador.
Etapa 3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.4
Avalie .
Etapa 3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4.3
Multiplique por .
Etapa 3.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.6
Some e .
Etapa 4
Avalie o limite de , que é constante à medida que se aproxima de .