Insira um problema...
Cálculo Exemplos
Etapa 1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2
Etapa 2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.3.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 2.3.3
Substitua todas as ocorrências de por .
Etapa 2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.7
Multiplique por .
Etapa 2.8
Multiplique por somando os expoentes.
Etapa 2.8.1
Mova .
Etapa 2.8.2
Multiplique por .
Etapa 2.8.2.1
Eleve à potência de .
Etapa 2.8.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.8.3
Some e .
Etapa 2.9
Mova para a esquerda de .
Etapa 3
Etapa 3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.2.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 3.2.3
Substitua todas as ocorrências de por .
Etapa 3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.5
Multiplique por .
Etapa 3.6
Multiplique por .
Etapa 4
Etapa 4.1
Aplique a propriedade distributiva.
Etapa 4.2
Combine os termos.
Etapa 4.2.1
Multiplique por .
Etapa 4.2.2
Multiplique por .
Etapa 4.2.3
Some e .
Etapa 4.3
Reordene os termos.
Etapa 4.4
Reordene os fatores em .