Insira um problema...
Cálculo Exemplos
Etapa 1
Remova os parênteses.
Etapa 2
Divida a integral única em várias integrais.
Etapa 3
Como é constante com relação a , mova para fora da integral.
Etapa 4
Etapa 4.1
Deixe . Encontre .
Etapa 4.1.1
Diferencie .
Etapa 4.1.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 4.1.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 4.1.2.2
A derivada de em relação a é .
Etapa 4.1.2.3
Substitua todas as ocorrências de por .
Etapa 4.1.3
Diferencie.
Etapa 4.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.3.3
Simplifique a expressão.
Etapa 4.1.3.3.1
Multiplique por .
Etapa 4.1.3.3.2
Mova para a esquerda de .
Etapa 4.2
Reescreva o problema usando e .
Etapa 5
Aplique a regra da constante.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
Etapa 7.1
Deixe . Encontre .
Etapa 7.1.1
Diferencie .
Etapa 7.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 7.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 7.1.4
Multiplique por .
Etapa 7.2
Reescreva o problema usando e .
Etapa 8
Etapa 8.1
Combine e .
Etapa 8.2
Combine e .
Etapa 9
Como é constante com relação a , mova para fora da integral.
Etapa 10
Etapa 10.1
Combine e .
Etapa 10.2
Mova o número negativo para a frente da fração.
Etapa 11
Como a derivada de é , a integral de é .
Etapa 12
Etapa 12.1
Simplifique.
Etapa 12.2
Simplifique.
Etapa 12.2.1
Multiplique por .
Etapa 12.2.2
Multiplique por .
Etapa 12.2.3
Combine e .
Etapa 13
Etapa 13.1
Substitua todas as ocorrências de por .
Etapa 13.2
Substitua todas as ocorrências de por .
Etapa 14
Reordene os termos.